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1 Introduction

Air pollution is one of the most pressing global challenges that continues to affect many lives worldwide.

In the United States, air quality has improved substantially in the last few decades, largely thanks to a va-

riety of environmental regulations (Chay and Greenstone, 2003; Shapiro and Walker, 2018). However, air

pollution from recent wildfires has resulted in new negative impacts on economic outcomes (Wang et al.,

2021; Borgschulte, Molitor and Zou, 2022; Wen and Burke, 2022).1 Moreover, recent studies show that air

pollution can have significant long-run impacts on health (Bishop, Ketcham and Kuminoff, 2022). In devel-

oping countries, severe air pollution is still considered to be one of the most crucial burdens for economic

development (Jayachandran, 2009; Chen, Ebenstein, Greenstone and Li, 2013; Greenstone and Jack, 2015;

Jack, 2017; Ito and Zhang, 2020; Berkouwer and Dean, 2022).

A fundamental challenge of air pollution is its international transboundary nature. Air pollution emis-

sions from a country are not confined to its borders and affect neighboring nations, which also implies that

a country’s environmental policy may have international spillover benefits on other countries. International

organizations including the World Bank recognize the international spillover effects of air pollution to be

the first order problem in economic development (World Bank, 2022). However, the economics literature

generally has not incorporated this spillover effect when evaluating the cost of air pollution and the benefit of

environmental regulation. For example, the benefits of US environmental regulations are usually estimated

based on the domestic benefits. Similarly, the benefits of recent ambitious environmental policies in China

and India may have substantial impacts on environmental quality in the surrounding countries, but these

spillovers are not typically considered while evaluating these policies.

In this study, we investigate the international spillover effects of air pollution and examine the extent

to which conventional economic analysis can understate the cost of air pollution as well as the benefits of

environmental regulations. Our framework integrates recent advances in atmospheric science into econo-

metric estimation with microdata on mortality and health. Specifically, we obtain data on hourly particle

trajectories from China to South Korea using the Hybrid Single-Particle Lagrangian Integrated Trajectory

model (HYSPLIT).2 Combining these particle trajectory data with hourly PM2.5 data in China and South

1In addition to air pollution, the uncontrolled spread of wildfires significantly impacts human safety and damages properties
(Baylis and Boomhower, 2022).

2Although outside the context of international spillovers, a growing number of recent economics studies use HYSPLIT to
analyze air pollution (Hernandez-Cortes and Meng, 2023; Fowlie, Rubin and Wright, 2021).
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Korea, we estimate how transboundary PM2.5 from China affects PM2.5 in South Korea.3 We then connect

these data with the universe of individual-level mortality data and emergency department visit data in South

Korea to quantify the mortality and health impacts of transboundary air pollution.

We begin by presenting descriptive and visual evidence that transboundary air pollution from China is

likely to play a significant role in PM2.5 in South Korea. In East Asia, fall and winter are known as the

seasons characterized by prevailing west wind, called “the westerlies,” as a result of which, South Korea

receives persistent west winds from China. In these seasons, we find that PM2.5 is substantially higher in the

northwest region of South Korea than the southeast region. By contrast, these regions have similar PM2.5

levels in spring and summer. We use HYSPLIT to quantitatively confirm this relationship by identifying

the hourly particle trajectories from China to South Korea. The northwestern cities in South Korea, such as

Incheon and Seoul, have trajectories coming from China more than half of the times in our sample period.

By contrast, cities in the southeast, such as Busan, experience trajectories from China at a lower frequency.

We statistically estimate this relationship by regressing the hourly PM2.5 in South Korean cities on the

hourly transboundary PM2.5 from China to each city. We find that, on average, a 1 µg/m3 increase in

transboundary PM2.5 from China results in a 0.122 µg/m3 increase in PM2.5 in South Korean cities. The

estimate is robust and stable to the choice of fixed effects and control variables. Furthermore, our binned

scatter plots suggest a strong and robust relationship between these two variables, both in the raw data and

residualized data.

Combining these data with the universe of individual-level mortality data, we estimate the mortality

impact of transboundary air pollution. Our reduced-form estimates indicate that a 1 µg/m3 increase in

transboundary PM2.5 from China in the past 70 days results in an increase in hourly mortality in South

Korea by 3.56 per billion people for the overall population (an increase in annual mortality of 31.2 per

million people). This effect implies a 0.6% increase in mortality with respect to a 1 µg/m3 increase in

transboundary PM2.5, relative to the baseline mortality rate for this population.

In addition to the mortality impact on the overall population, we also estimate the impacts on the elderly

(ages 65 and above), infants (ages below 1), and those with respiratory and cardiovascular diseases as the

cause of death. The marginal effect on mortality is higher for infants (a 2.1% increase in mortality with

respect to a 1 µg/m3 increase in transboundary PM2.5 in the past 70 days) and those with respiratory and

cardiovascular diseases as the cause of death (a 1.1% increase in mortality). Our analysis also suggests

3PM2.5 refers to fine particles in the air that are two and one half microns or less in width.
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that both the contemporaneous and lagged transboundary PM2.5 affect mortality, although the lagged effects

diminish at 70 days.

Using the transboundary PM2.5 from China as an instrumental variable (IV) for the local PM2.5 in South

Korea, we also identify the effect of PM2.5 on mortality in South Korea. Our IV estimates indicate that a

1 µg/m3 increase in PM2.5 in the past 70 days results in an increase in hourly mortality by 9.09 per billion

people for the overall population. This effect implies an increase in annual mortality of 79.7 per million

people and a 1.5% increase in mortality relative to the mean. The marginal effect as a percent increase in

mortality is larger for infants (a 5.5% increase) and those with respiratory and cardiovascular diseases as the

cause of death (a 2.9% increase).

Besides the impact on mortality, air pollution could also increase morbidity (Barwick, Li, Rao and

Zahur, 2018). In particular, the short- and medium-run increases in air pollution are believed to affect the

acute symptoms of asthma and rhinitis (Eguiluz-Gracia et al., 2020; Kuiper et al., 2021). Thus, the increase

in transboundary PM2.5 from China to South Korea may increase such symptoms in the South Korean

population. To investigate this issue, we collected data on the universe of emergency department (ED) visits

in South Korea between 2013 and 2017 for patients who received medical treatment in the ED for atopic

dermatitis, rhinitis, or asthma. We find that transboundary PM2.5 results in increased ED visits for asthma

and rhinitis but atopic dermatitis. The reduced-form results imply that a 1 µg/m3 increase in transboundary

PM2.5 from China to South Korea results in an increase in daily ED visits by 50.0 and 482.6 per billion

people (or annual ED visits by 18.3 and 176.1 per million people) for asthma and rhinitis, respectively,

which are 0.5% and 3.4% increases relative to the means.

Our empirical findings suggest that transboundary air pollution from China has substantial impacts on

mortality and morbidity in South Korea. A key policy implication of these findings is that a country’s envi-

ronmental regulations may have international spillover effects on other countries. However, these spillover

effects have not been incorporated in the conventional cost-benefit analysis of environmental regulations in

the economics literature. To highlight this point, we consider an implication of a prominent environmental

policy recently implemented in China known as “the war on pollution” (Greenstone, He, Li and Zou, 2021).

Since 2014, the Chinese government has rolled out a nationwide air pollution reduction program. Our data

suggest that PM2.5 in China had a long-run decline during our sample period. Our data also show that this

reduction resulted in a decline in transboundary PM2.5 from China to South Korea. Based on the data we

obtained from the HYSPLIT model, we find that transboundary PM2.5 from China to South Korea declined
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by 9.63 µg/m3 during our sample period from 2015 to 2019.

We use our estimates and the value of a statistical life estimated in the literature to quantify the spillover

benefits of the Chinese environmental regulation for South Korea. We find that a 9.63 µg/m3 reduction in

transboundary PM2.5 from China to South Korea implies a spillover benefit of $2.62 billion per year for

South Korea based on the avoided mortality. This result suggests that the international spillover benefit of

environmental regulation is economically substantial.

Finally, we investigate China’s strategic reductions in air pollution and their implications for the Coasian

bargaining. For water pollution, several previous studies find that a county or local government may take

advantage of the spillovers of water pollution and strategically allocate the flow of the pollution in trans-

boundary rivers (Sigman, 2002; Lipscomb and Mobarak, 2016; Wang and Wang, 2021; He, Wang and

Zhang, 2020). To the best of our knowledge, such strategic allocation of pollution has not yet been investi-

gated for air pollution. However, in theory, it is possible to observe such a phenomenon for air pollution. If

China made such a strategic decision during the war on pollution, China may have been primarily focused

on reducing air pollution more for its citizens and less for those who live in other countries, thus potentially

lowering the potential international spillover benefits.

We indeed find empirical evidence of China’s strategic reductions in air pollution during the war on

pollution. We show that the reduction in PM2.5 during our sample period was 9.29 µg/m3 in Chinese cities

from which most air pollution has gone outside the national border. This reduction in PM2.5 is lower than

the nationwide average reduction (14.07 µg/m3) and much lower than the reduction in Chinese cities from

which most air pollution has remained within China (18.32 µg/m3). This strategic pollution reduction im-

plies that the international spillover benefits our analysis revealed may have been lower than a counterfactual

scenario in which such a strategic decision was absent or China and South Korea employed the Coasian bar-

gaining to address this problem. We show that the additional international spillover benefit of the war on

pollution could have been up to $2.36 billion per year for South Korea.

Related literature and our contributions— Our study builds on and contributes to four strands of the

literature. First, we provide a new framework that integrates recent advances in atmospheric science into

econometric estimation with microdata on mortality and health to study the international spillover effects

of air pollution. Previous studies in economics use indirect measures of transboundary air pollution such as

an interaction term between wind direction and air pollution or a dummy variable of particular events such

as yellow dust or wildfires (Sheldon and Sankaran, 2017; Jia and Ku, 2019; Cheung, He and Pan, 2020).
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This is because researchers find it difficult to obtain direct measurements of transboundary air pollution.

For example, Jia and Ku (2019) describe that “tracing winds from the vast area of China to a specific

district within South Korea is difficult and such data do not exist.” We address this challenge by obtaining

location-specific hourly transboundary PM2.5 data using HYSPLIT and integrating them with the universe

of mortality and ED visit data in South Korea.

Second, our study expands on the findings of recent studies that use detailed data on air pollution,

mortality, and health to estimate the mortality and health impacts of air pollution. For example, Deryugina,

Heutel, Miller, Molitor and Reif (2019) estimate the mortality effect of PM2.5 for the elderly in the United

States from 1999 to 2013 using Medicare data with wind direction as an instrumental variable. Both these

papers and our study connect microdata on mortality or health outcomes with detailed data on air pollution.

Our study differs from these previous studies in two ways. First, our research question is on the international

spillover effects of air pollution. Second, we use data on the direct measures of particle trajectories based

on HYSPLIT rather than wind direction to trace air pollution trajectories.

Third, we provide new evidence on the international spillovers of environmental externalities. In the

economics literature, the focus of this topic has been primarily on water pollution in transboundary rivers

(Sigman, 2002; Lipscomb and Mobarak, 2016; Wang and Wang, 2021; He, Wang and Zhang, 2020). This is

partly because measuring transboundary air pollution is more difficult than measuring transboundary water

pollution. Our framework addresses this challenge by integrating HYSPLIT with econometric estimation.

We find evidence that China may have strategically reduced more air pollution in Chinese cities where most

air pollution remains within the country borders than in cities where most air pollution travels beyond the

national boundaries. Based on this finding, we provide implications for the potential Coasian bargaining for

transboundary air pollution.

Finally, our framework benefits from recent advancements in atmospheric science. Many recent studies

in atmospheric science use HYSPLIT or similar models to obtain particle trajectories (Lee, Ho, Lee, Choi

and Song, 2013; Oh et al., 2015; Lee et al., 2017; Bhardwaj et al., 2019; Han, Cai, Zhang and Wang, 2021).

Studies in atmospheric science, however, usually do not intend to estimate the impacts of transboundary air

pollution on mortality or other economic and health outcomes. We contribute to this literature by connecting

transbounadry air pollution data from HYSPLIT with microdata on mortality and health to shed light on the

economic implications of international air pollution spillovers.
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2 Data and Descriptive Evidence

In this section, we describe our data and provide descriptive evidence of transboundary air pollution from

China to South Korea.

2.1 PM2.5 in South Korea and China

We obtain hourly PM2.5 concentrations in Chinese cities from Berkeley Earth’s air pollution data. Berkeley

Earth collects hourly PM2.5 at the city level that are regionally interpolated from real-time observations made

by ground-level monitoring stations. The air pollution data provide good coverage of PM2.5 concentrations

in China, as shown in Figure A.3.4

Hourly PM2.5 concentrations in South Korean cities are obtained from the Korea Environment Corpo-

ration’s air pollution data. The data contain hourly concentrations of pollutants such as PM2.5, PM10, SO2,

CO, O3, and NO2. The National Institute of Environmental Research in South Korea collects data from 153

monitors, with records dating back to 2001. Although PM10 has been collected since 2001, collection of

PM2.5 only began in 2015 as part of the Clean Air Conservation Act that was passed in October 2013. We

show monitor locations in Figure A.4.5

Figure 1 provides suggestive evidence that transboundary air pollution from China may play a significant

role in the PM2.5 levels in South Korea. It shows the time-series variation in PM2.5 in China and South Korea

between January 2015 and December 2020. We split South Korea into two regions: northwest (i.e., regions

closer to China) and southeast (i.e., regions relatively far from China) to examine how PM2.5 in China

correlate differently with PM2.5 in the northwest and southeast regions in South Korea.

[Figure 1 about here]

The figure suggests that PM2.5 in China persistently declined during our sample period. Many previous

studies find that a large part of this reduction is attributable to aggressive environmental regulation imple-

mented in China, known as “the war on pollution” (Greenstone, He, Li and Zou, 2021). Our data suggest

that the average reduction in PM2.5 in China from 2015 to 2019 was 14.07 µg/m3 .

In addition, PM2.5 in China is almost always higher than PM2.5 in South Korea and generally higher in

fall and winter than in summer and spring. This is because heating in fall and winter is a major source of air
4The air pollution data are available at the Berkeley Earth website: http://berkeleyearth.org. Accessed February 10, 2022.
5Data is available at AirKorea, a webpage operated by Korea Environment Corporation: https://www.airkorea.or.kr/web.
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pollution in China (Ito and Zhang, 2020). In East Asia, fall and winter are also known to be seasons when

the prevailing west winds called, “the westerlies,” persist. In Figure A.2, we use wind data in South Korea

to show that this is in fact the case—in South Korea, the wind blows from west to east in over 70% of the

time in fall and winter. The wind speed is also stronger in fall and winter than in spring and summer (Figure

A.2).

The combination of the higher PM2.5 in China and the seasonal westerlies could explain why systematic

deviations in PM2.5 exist between the northwest and the southeast regions of South Korea only in fall and

winter. The PM2.5 levels are similar in the northwest and the southeast regions during spring and summer.

By contrast, the northwest region has substantially higher PM2.5 levels than the southeast region in fall and

winter, in which the PM2.5 levels in China tend to be high and the area is prone to persistent westerlies. In

the next section, we provide a more formal analysis of this point by using air pollution trajectory data from

atmospheric science.

2.2 Transboundary Air Pollution from China to South Korea

As we discussed in the introduction, previous studies in economics typically use indirect measures of trans-

boundary air pollution when examining international spillovers of air pollution. However, researchers in

atmospheric science have recently developed several ways to obtain direct measures of transboundary air

pollution.

One of the state-of-the art methods is to use the Hybrid Single-Particle Lagrangian Integrated Trajectory

model (HYSPLIT) developed by the National Oceanic and Atmospheric Administration (NOAA) Air Re-

sources Laboratory. HYSPLIT has been used in a variety of applications to describe atmospheric transport,

dispersion, and deposition of pollutants. The model can compute particle trajectories to determine the dis-

tance and locations to which particles travel. The model can also trace emitted radioactive material, wildfire

smoke, dust, and other pollutants.6

Using meteorological data, HYSPLIT can provide data on forward or backward pollution trajectories.7

The forward trajectories trace the movement of particles from a given point and time, while the backward

6There are various atmospheric transport models that can simulate pollution dispersion. We choose HYSPLIT, because it is
both reliable and computationally tractable, which makes it the most suitable for our project. At the expense of not accounting
for secondary chemical reactions, HYSPLIT can track particles in a computationally efficient manner. AERMOD, a steady-state
Gaussian-plume dispersion, incorporates chemical reactions, but it is only designed for short-range particle dispersion up to 50 km.
Other atmospheric dispersion models that incorporate chemical reactions such as CMAQ and WRF-chem incorporate chemical
reactions but require significantly intensive computational power.

7For the meteorological data, we use the NCEP/NCAR reanalysis data. Further details are available in Appendix A.
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trajectories trace the movement of particles backward in time from the arrival location. These two trajecto-

ries are useful to answer different questions. For example, forward trajectories can be used to analyze the

effect of emissions from a point source such as a factory or a volcano. On the other hand, backward trajec-

tories help determine possible sources that might contribute to high levels of pollution in one area. We use

backward trajectories in most of our analysis and forward trajectories in Section 4. We provide a detailed

description of HYSPLIT and its application to our analysis in Appendix A.

It is worth clarifying that the HYSPLIT does not use any air pollution information when obtaining tra-

jectories, and therefore, particle trajectories obtained by the HYSPLIT are not endogenous to local pollution.

The HYSPLIT uses meteorological data to identify the trajectory of a particle from one location to another

location for all hours, including hours that may not have any local air pollution from the origin location.

In Figure 2, we show a few examples of backward trajectories obtained from HYSPLIT using Seoul as an

example to plot backward trajectories for three different hours. For instance, the red line shows the backward

trajectory that arrived at Seoul at 8 pm on June 15, 2015. HYSPLIT provides data on the particle trajectory’s

longitude, latitude, and height every hour. For each city in South Korea, we obtain backward trajectories for

every hour in our sample period. Each hourly backward trajectory starts from a city’s centroid and traces

the particle trajectory backward. With this process, we obtain 6.57 million backward trajectories in total (24

hourly trajectories × 365 days × 5 years × 228 cities in South Korea). While this is a computationally-

intensive data collection, parallel computing allows us to obtain millions of trajectories in about a week.

[Figure 2 about here]

In Figure 3, we present how often South Korean cities have backward trajectories from China. For

each city in South Korea, we calculate the percentage of hours in which the city had trajectories originating

from China during our sample period.8 The denominator is the total number of hours from January 1, 2015

to December 31, 2019, and the numerator is the total number of hours in which the backward trajectories

came from China. The figure indicates substantial heterogeneity among South Korean cities. Cities in the

northwest, such as Incheon and Seoul, have trajectories coming from China more than half of the time in

our sample period. By contrast, cities in the southeast, such as Busan, have significantly fewer frequency of

trajectories from China.

8We consider that a backward trajectory comes from China if the trajectory is from the inside of China’s country borders at a
height below 1 km.
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[Figure 3 about here]

In Figure 4, we show how often Chinese cities have trajectories that arrive at any South Korean city. For

each city in China, we calculate the ratio, in which the denominator is the total number of hours from January

1, 2015 to December 31, 2019, and the numerator is the total number of hours in which a trajectory went

from the city in China to any South Korean city. We find higher fractions of trajectories coming from the

northeastern part of mainland China, particularly the Liaoning Province owing to the persistent west wind

in this region (the westerlies) and the proximity to South Korea. This map indicates that transboundary air

pollution from these regions is more likely to affect South Korean cities.

[Figure 4 about here]

We also investigate how many hours each trajectory takes to travel from China to South Korea. For

each trajectory that went from China to a South Korean city, we observe how many hours it took to move

from the last grid point in China to the city in South Korea. We present the distribution of this duration in

Figure A.5. The median is 38 hours, and there is substantial variation in the duration (the 25th and 75th

percentiles are 22 and 69 hours). This substantial heterogeneity suggests that it is important to obtain direct

information on each trajectory from HYSPLIT and that commonly-used indirect approaches (e.g. using

average air pollution in China one or two days ago as a proxy for transboudnary air pollution) may not be

able to accurately capture transboundary air pollution.9

We construct a variable TransboundaryPMct based on the hourly backward trajectory data and PM2.5

data in China. For each hour t in city c in South Korea, we observe whether the backward trajectory comes

from China. If the trajectory does not come from China, we define TransboundaryPMct as zero as the focus

of our study is transboundary air pollution from China. When the trajectory comes from China, we collect

its origin’s location and time. By merging this information with city-level data on hourly PM2.5 in China,

we can obtain PM2.5 levels at the origin of the trajectory. We set this value to be TransboundaryPMct. For

example, suppose that a pollution trajectory travels for 24 hours from Beijing to Seoul and arrives at hour t.

In that case, TransboundaryPMct equals to the PM2.5 level in Beijing in hour t− 24.

The particle trajectory data by itself does not uncover how transboundary air pollution affects local air

pollution in South Korea. Our idea is that we can empirically estimate this relationship by regressing the
9This distribution also suggests that most trajectories from China to South Korea are less than 100 hours. Therefore, we use

200 hours as the maximum run-time to obtain relevant trajectories for our analysis.
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local hourly PM2.5 levels in South Korean cities on TransboundaryPMct with and without control variables.

In section 3.1, we find a strong systematic relationship between these two variables and demonstrate that

this relationship is robust to the inclusions of various fixed effects and control variables.10

2.3 Mortality in South Korea

We collect South Korean mortality microdata from the MicroData Integrated Service (MDIS), which is

operated by Statistics Korea, a South Korean national statistical agency. The microdata include the universe

of individual-level mortality information from January 1997 to December 2019, including each individual’s

date and hour of death, age at death, sex, city of death, and cause of death.11

2.4 Emergency Department Visits in South Korea

We obtain data on emergency department (ED) visits in South Korea between 2013 and 2017 for patients

admitted due to atopic dermatitis, rhinitis, or asthma. The National Health Insurance Service (NHIS) in

South Korea provides data on all ED admissions at the district and daily level. The data are representative of

the whole South Korean population because almost all (97%) eligible South Korean citizens are beneficiaries

of this national insurance policy (Kim and Kim, 2021).

2.5 Other Data

For some of our analysis, we use hourly South Korean meteorological data from January 2001 to December

2019. This monitor-level dataset, produced by the Korea Meteorological Administration, includes wind

speed and direction, temperature, and precipitation levels. The data are collected from 612 ground-level

monitors, including automated synoptic observing stations and automatic weather stations, installed to gain

a wide coverage on weather conditions in South Korea. Figure A.4 displays their coverage.

To create maps, we obtain shapefiles for China from the United Nations Office for the Coordination

of Humanitarian Affairs and OSM-Boundaries, and a shapefile for South Korea from Geoservice Inc., a

10In the HYSPLIT, we need to specify the starting height of the backward trajectories. We follow the literature in atmospheric
science to use 500 meters for our main results and examine their robustness in Table A.4. The results in Table A.4 suggest that they
are robust to heights over 500 meters and that the Kleibergen-Paap rk Wald F-statistic is highest with 500 meters. Similarly, we
need to specify the heights of the trajectories in China (the height at the origin of the backward trajectory) to determine the origin of
the trajectory. Studies in atmospheric science use a height of 1,000 meters, and we find that indeed this height at the origin produces
the highest Kleibergen-Paap rk Wald F-statistic in our first stage regression.

11Data are available at MDIS: https://mdis.kostat.go.kr.
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research institute that provides technology on geographic information systems (GIS), three-dimensional

visualization, and deep learning.12

2.6 Summary Statistics

Table 1 provides the summary statistics. The average PM2.5 in our sample period is 45.05 µg/m3 in China

and 24.99 µg/m3 in South Korea. The transboundary trajectory indicator variable at the city-hour level

equals one if a backward pollution trajectory from a South Korean city comes from China. The average

of this variable (0.39) indicates that 39% of the trajectories came from China in our sample period. The

mortality data suggest that approximately a quarter of mortality in South Korea is due to respiratory or

cardiovascular illnesses.

[Table 1 about here]

3 Empirical Analysis and Results

In this section, we present our econometric analysis and results. We begin by estimating the first-stage

regression in section 3.1 to estimate the impact of transboundary air pollution on local air pollution in

South Korea. We then estimate the reduced-form in section 3.2 to identify the impact of transboundary

air pollution on mortality in South Korea. Finally, in section 3.3, we run the instrumental variable (IV)

estimation to estimate the effect of local air pollution on mortality in South Korea.

3.1 First-stage Regression

We use PMct to denote hourly PM2.5 in South Korean city c in hour t and TransboundaryPMct to denote

hourly transboundary PM2.5 that reached city c in hour t. In the first-stage regression, we estimate the

impacts of the transboundary air pollution from China on local air pollution in South Korea by running the

ordinary least squares (OLS) regression for the following equation:

PMct = αTransboundaryPMct +Xctγ + uct, (1)

12These shapefiles are available online at https://data.humdata.org/dataset/china-administrative-boundaries. and
http://www.gisdeveloper.co.kr.
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where Xct is a vector of control variables for city c and hour t, and uct is the error term. We include a

set of control variables to control for potential confounding factors such as seasonality and weather. In

the most restrictive specification, we include city-by-year-by-month fixed effects, city-by-day of week fixed

effects, city-by-rainfall quartile fixed effects, and city-by-temperature quartile fixed effects. The identifying

assumption is that the error term is not correlated with the transboundary air pollution given the control

variables and fixed effects in the equation. We cluster standard errors at the city level.

In Figure 5, we provide a binned scatter plot of PMct against TransboundaryPMct to non-parametrically

examine the relationship between these two variables. Panel A shows the binned scatter plot of the raw

data without controls. We use 1 µg/m3 of TransboundaryPMct as the bin size to calculate the average

PMct for each bin. The figure suggests a strong relationship between the two variables that is close to

linear. In Panel B, we residualize these variables by city-by-year-by-month fixed effects, city-by-day of

week fixed effects, city-by-rainfall quartile fixed effects, and city-by-temperature quartile fixed effects. We

find that the relationship between PMct and TransboundaryPMct is robust to these controls. Recall that

the HYSPLIT does not use any air pollution information to obtain particle trajectories, and therefore, the

positive relationship shown in Figure 5 is not mechanical due to the HYSPLIT.

[Figure 5 about here]

Table 2 shows the regression results of Equation (1). The results suggest that the estimate is robust

and stable to the choice of fixed effects and control variables. The coefficient in column 5 implies that,

on average, a 1 µg/m3 increase in transboundary PM2.5 from China on average results in a 0.122 µg/m3

increase in PM2.5 in South Korean cities. The Kleibergen-Paap rk Wald F-statistic is 5,812, suggesting that

there is a strong first-stage relationship between these two variables.

[Table 2 about here]

3.2 Reduced-form Estimation

To identify the impact of transboundary air pollution from China on mortality in South Korean cities, we

estimate the following equation by OLS:

Mortalityct =
J∑

j=0

βjTransboundaryPMc,t−j +Xctγ + uct, (2)
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where Mortalityct is the hourly mortality (deaths per billion people) in city c in hour t. We include both the

concurrent (j = 0) and lagged (j > 0) transboundary air pollution to estimate βj for j = 1, ..., J . These

coefficients estimate the short- and medium long-run effects of transboundary air pollution on mortality. We

include the same set of fixed effects and control variables—those included in the most restrictive specifica-

tion (the final column) of Table 2—and cluster the standard errors at the city level. We show that our results

are robust to the choice of different control variables and fixed effects in Table A.2.

Table 3 shows the estimation results of Equation (2). In Panel A, we include the average of hourly

transboundary PM2.5 from China in the past 70 days to estimate the average effect of concurrent and lagged

transboundary PM2.5.13 The estimate for the overall population (the final column) suggests that one µg/m3

increase in transboundary PM2.5 from China in the past 70 days results in a 3.56 per billion people increase

in hourly mortality in South Korea. Because the average hourly mortality is 618 per billion people in our

sample, this marginal effect indicates a 0.6% increase in mortality with respect to a 1 µg/m3 increase in

transboundary PM2.5. In the final row of the table, we also show the implied marginal effect on annual

mortality per million people. For the overall population, our estimate implies that a 1 µg/m3 increase in

transboundary PM2.5 in the past 70 days results in a 31.2 per million people increase in annual mortality.

[Table 3 about here]

In addition to the overall population, we also provide results for the elderly (ages 65 and above), infants

(ages 1 and under), and those with respiratory and cardiovascular diseases as the cause of death. The

marginal effect on mortality is higher for infants (a 2.1% increase in mortality with respect to 1 µg/m3

increase in transboundary PM2.5) and those with respiratory and cardiovascular diseases as the cause of

death (a 1.1% increase in mortality).

In Panel B, we estimate the weekly lagged effects of transboundary PM2.5 on mortality. We include a

set of 7-day average hourly transboundary PM2.5 from China. We find that transboundary air pollution that

arrived in the past 14-63 days tends to have the largest partial effects on mortality, although pollution that

arrived in the past 0-14 days also has significant effects. This effect decays as we consider lagged effects

beyond 63 days and becomes statistically insignificant. This finding is consistent with the medium-long-

run mortality effect of PM2.5 found in the literature. For example, although the context is different from

13We show the results with the average of hourly transboundary PM2.5 from China in the past 70 days in Panel A because we
find that the lagged effects decay after 70 days in Panel B.
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international air pollution spillover effects, Deryugina, Heutel, Miller, Molitor and Reif (2019) find that

exposure to PM2.5 has medium-long-run effects on mortality for Medicare recipients in the United States

but these lagged effects diminish over time.14

In Figure 6, we visualize these weekly lagged effects and 95% confidence intervals. These weekly

lagged effects are useful to examine the possibility of the “harvesting effect” frequently discussed in the

literature (Deschenes and Moretti, 2009). The harvesting effect implies that air pollution may not cause

more total deaths but only cause forward displacement of mortality. That is, air pollution may only result in

the death of the sick who would have died a few days later even in the absence of air pollution. Therefore,

previous studies suggest that researchers estimate either the longer-run average effect (such as our Panel A)

or the series of lagged effects jointly with the contemporaneous effect (such as our Panel B).

[Figure 6 about here]

If there is a substantial harvesting effect, we would observe positive effects in shorter lags followed by

negative effects in longer lags, creating a U-shaped line in Figure 6. Our estimation results, however, show

positive and significant effects in all the lags for the past 70 days, resulting in an inverted U-shaped line.

This evidence suggests that the harvesting effect is unlikely to be substantial in our context.

3.3 Instrumental Variables Estimation

Figure 5 and Table 2 show a strong first-stage relationship between transboundary PM2.5 from China to

South Korea and PM2.5 levels in South Korea. This suggests that we could use transboundary PM2.5 as an

instrument for PM2.5 to estimate the effect of PM2.5 on mortality in South Korea. The exclusion restriction

assumption required for this instrumental variable (IV) estimation is that given the set of control variables

included in the estimation, transboundary PM2.5 affects mortality only through PM2.5.

We estimate the following equation using the IV regression:

Mortalityct =
J∑

j=0

φjPMc,t−j +Xctγ + uct. (3)

We use TransboundaryPMc,t−j as an instrumental variable for PMc,t−j , include the same set of fixed effects

14Deryugina, Heutel, Miller, Molitor and Reif (2019) note, “the increase in the effect of a 1-day shock appears to level off after
about 14 days, suggesting that the effects of acute exposure do not cause additional deaths beyond this point."
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and control variables included in Equation (2), and cluster the standard errors at the city level. We show that

our results are robust to the choice of different control variables and fixed effects in Table A.3.

Table 4 presents the estimation results of Equation (3). The last column of Panel A indicates that a 1

µg/m3 increase in PM2.5 in the past 70 days results in a 9.09 per billion people increase in hourly mortality

for the overall population. This implies a 79.7 per million people increase in annual mortality and a 1.5%

increase in mortality relative to the mean. The marginal effect in terms of a percentage increase in mortality

is larger for infants (a 5.5% increase) and those with respiratory and cardiovascular diseases as the cause of

death (a 2.9% increase).

[Table 4 about here]

Our reduced-form and IV estimates provide new evidence on the mortality impact of transboundary

air pollution. We can compare our IV estimate to recent estimates of the mortality impacts of PM2.5 in

other contexts and discuss what makes these estimates similar or different. For example, Deryugina, Heutel,

Miller, Molitor and Reif (2019) estimate the mortality effect of PM2.5 for the elderly in the United States

from 1999 to 2013 using the Medicare data with wind direction as an instrument. They find that a 1 µg/m3

increase in PM2.5 exposure for one day causes 0.69 additional deaths per million elderly individuals over

a three-day window that spans the day of the increase and the following two days. Panel B in our Table

4 suggests that the contemporaneous marginal effect of PM2.5 on the elderly is a 4.05 per billion people

increase in hourly mortality, which implies a 0.29 per million people increase in three-day mortality.15

This implies that the magnitude of our IV estimate is similar to but slightly smaller than the IV estimate

in Deryugina, Heutel, Miller, Molitor and Reif (2019). There are several possible explanations for this

difference. First, the two studies use different instrumental variables and thus estimate different local average

treatment effects (Angrist and Imbens, 1995). Second, the elderly in South Korea are known to have fewer

underlying health conditions than the Medicare population in the United States, which could make them

relatively less vulnerable to exposure to PM2.5.16

15This is because 4.05 · 24 · 3/1000 = 0.29.
16Another possibility is that the harmfulness of PM2.5 can differ between two locations because the toxicity of the small particles

could vary. For example, Hsiang, Lee and Wilson (2022) find empirical evidence that supports this possibility.
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3.4 Mortality Impacts by Age Group

The impact of air pollution on mortality can substantially differ across ages. Such heterogeneity is important

to quantify for our analysis of policy implication in Section 4. To estimate the heterogeneous effects of

transboundary air pollution on mortality across ages, we divide our mortality data into age groups and

estimate the Equations (2) and (3) separately for each group.

In Table 5, we find that the mortality impact of transboundary air pollution is statistically and economi-

cally significant for infants and individuals over 30 years of age and insignificant for individuals aged 1–29

years. Note that the baseline mortality is low for those between 1–29 years, which could make statistically

detecting the impact relatively more challenging.

[Table 5 about here]

The marginal effect on mortality in terms of percentage increases relative to the baseline mortality level

in each group is the largest for infants. However, the marginal effects in terms of increased death counts

per billion people are higher for the elderly. We incorporate this heterogeneity in our analysis of policy

implication in Section 4.

3.5 Impacts on Emergency Department Visits

In addition to its impact on mortality, air pollution may increase morbidity (Barwick et al., 2018). In

particular, the short- and medium-run increases in air pollution are believed to affect the acute symptoms of

asthma and rhinitis (Eguiluz-Gracia et al., 2020; Kuiper et al., 2021). Thus, the increase in transboundary

PM2.5 from China to South Korea might cause such symptoms to be more prevalent in the South Korean

population.

In Table 6, we test this hypothesis using data on daily emergency department (ED) visits. The outcome

variable is the number of ED visits by diagnosis at the city-day level. We use the same specification as Panel

A in Tables 3 and 4 to estimate the reduced-form and IV regressions. Because seasonal pollen (oak, pine,

and weed) is also known to be related to the ED visits in South Korea, we include these three variables as

additional controls in our estimation but find that including these controls does not substantially change our

estimates as shown in Table A.5.

[Table 6 about here]
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Results in Table 6 suggest that transboundary PM2.5 results in increases in ED visits for asthma and

rhinitis. We do not find such an impact on atopic dermatitis. The reduced-form results imply that a 1 µg/m3

increase in transboundary PM2.5 from China to South Korea results in increases in daily ED visits of 50.0

and 482.6 per billion people for asthma and rhinitis, respectively, which are 0.5% and 3.4% increases relative

to the means.

4 Policy Implications

4.1 International Spillover Benefits of Environmental Regulation

Our empirical findings suggest that transboundary air pollution from China has substantial impacts on mor-

tality in South Korea. A key policy implication is that a country’s environmental regulation may have an

international spillover effect on citizens in other countries. As we discussed in the introduction, this spillover

effect has not been incorporated in economic analysis of environmental regulation in the economics litera-

ture.

To highlight this point, we consider an implication of a prominent environmental policy recently im-

plemented in China, known as “the war on pollution” (Greenstone, He, Li and Zou, 2021). In 2014, the

Chinese government began to roll out a nationwide air pollution reduction program. As shown in Figure

1, our data suggest that PM2.5 levels in China exhibited a long-run decline during our sample period. This

reduction also resulted in a decline in transboundary PM2.5 from China to South Korea. Based on the data

we obtained from the HYSPLIT model, we find that the annual average of transboundary PM2.5 from China

to South Korea declined by 9.63 µg/m3 during our sample period (2015–2019).

We quantify South Korea’s economic benefit from this reduction in transboundary PM2.5 based on the

following procedure. Table 6 provides estimates for the age-specific impacts of transboundary air pollution

on mortality. We use these coefficients to calculate the benefit from a 9.63 µg/m3 reduction in transboundary

PM2.5 on mortality in each age group in South Korea. We then use the value of a statistical life (VSL) in

the literature to obtain implied economic values arising from the reductions in mortality. Working on the

age-specific estimates—as opposed to using the average estimate—is important for two reasons. First, as

we find in Table 6, the mortality effects of PM2.5 are heterogeneous across age groups. Second, the VSL

can differ across age groups as noted by Murphy and Topel (2006).

To our knowledge, no previous studies provide age-specific VSLs for South Korea. We find three eco-
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nomic studies that estimate South Korea’s average VSL. Therefore, we make the following assumptions to

obtain age-specific VSL estimates. We calculate an average of the VSL estimates for South Korea from

three studies in the literature (Shin and Joh, 2003; Kim et al., 2003; Lee et al., 2011). This average VSL is

$511 thousand in 2019 US dollars.17 We then use the method in developed in Murphy and Topel (2006) to

obtain VSL estimates for each age group.18 We present the age-specific VSLs obtained from this approach

in Table A.7.

In Table 7, we present the result of this calculation in the first row. We find that a 9.63 µg/m3 reduction

in transboundary PM2.5 from China to South Korea implies an economic benefit of $2.62 billion per year

for South Korea based on the avoided mortality. This result suggests that the international spillover benefit

of environmental regulation is economically substantial. The overall spillover benefit can be even larger

than our estimate because our calculation does not include other potential benefits such as reductions in

morbidity costs and negative effects on productivity and educational outcomes (Chang, Graff Zivin, Gross

and Neidell, 2019; Ebenstein, Lavy and Roth, 2016; Greenstone et al., 2015; Bedi, Nakaguma, Restrepo and

Rieger, 2021; Borgschulte, Molitor and Zou, Forthcoming; Hanna and Oliva, 2015).

[Tables 7 about here]

4.2 Strategic Reductions in Air Pollution and Implications for Coasian Bargaining

For water pollution, several previous studies find that a country or local government might take advantage

of pollution spillovers by strategically allocating the flow of their water pollution (Sigman, 2002; Lipscomb

and Mobarak, 2016; Wang and Wang, 2021; He, Wang and Zhang, 2020). To our knowledge, such strategic

allocation of pollution has not been investigated for air pollution, but in theory it is possible because a

country or a local government is likely to have incentives to do so. If China made such a strategic decision

on where to reduce air pollution for “the war on pollution,” it may have prioritized reducing air pollution for

its citizens, and therefore air pollution may have decreased less for those who live in neighboring countries.

This strategic decision could lower the potential international spillover benefit.

17The VSL estimates in Shin and Joh (2003), Kim et al. (2003), and Lee et al. (2011) are 466, 463, and 277 million, respectively,
in South Korean won. We use the Consumer Price Index (CPI) in South Korea—71.50, 73.11, 88.08, and 115.16 for the years 1999,
2000, 2006, and 2019, respectively—and the 2019 exchange rate (1165.36 KRW to 1 USD) to convert them to USD in 2019. These
values are $630, $520, and $383 thousand in 2019 US dollars, respectively.

18Figure 3 in Murphy and Topel (2006) shows the values of remaining lives at each age for the US population. We make an
assumption that the curvature of these age-specific values can be applied to the South Korean population and scale the function by
the ratio of the South Korea’s VSL relative to the US VSL in Murphy and Topel (2006).
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To test this hypothesis, we use HYSPLIT to calculate the “in-China ratio” of the air pollution trajectories

for each of 783 cities in China. We obtain the in-China ratio using the following approach. For each city,

day, and hour, we use HYSPLIT to obtain forward trajectories of air pollution. We then compute the in-

China ratio based on the number of foward trajectories that stayed within China divided by the total number

of trajectories. We consider that a pollution trajectory stayed within China if the trajectory remained inside

the latitude and longitude boundaries of China or if its height is persistently below 1 km from the start of

the forward trajectory.

In Figure 7, we divide Chinese cities into four groups based on the quartile of the in-China ratio. For

example, cities in the first group have the lowest in-China ratio, meaning that air pollution trajectories are

less likely to fall within China. We compare the declines in PM2.5 leves relative to 2015 among the four

groups. The figure suggests that the first quartile group experienced a reduction in PM2.5 by 9.29 µg/m3 ,

which is similar to the reduction in transboundary PM2.5 levels for South Korea (9.63 µg/m3 ). By contrast,

the fourth quartile group had a PM2.5 reduction of 18.32. In Table A.6, we show that these differences in

PM2.5 reductions between the first quartile group and other groups are statistically significant.

This result provides suggestive evidence that China may have indeed made a strategic decision on where

to reduce air pollution for “the war on pollution.” Consequently, the international spillover benefit we

calculated in the previous section may have been reduced due to this strategic decision compared to a coun-

terfactual scenario in which such a strategic decision was absent or that in which China and South Korea

had the Coasian bargaining to address this problem.

Coase (1960) describes that one of the challenging issues of the Coasian bargaining in practice is mea-

suring the bargaining benefit. This is especially true for environmental externalities in international contexts.

For the international spillover of air pollution from China to South Korea, our result can be used to mea-

sure the potential benefit from this bargaining. In the second and third rows of Table 7, we consider two

counterfactual scenarios and calculate the potential benefits of China’s air pollution reductions.

Suppose China reduced its transboundary PM2.5 by 14.07 µg/m3 , which was the average reduction in

PM2.5 levels in China during our sample period. In this case, the benefit of this reduction is $3.83 billion

per year for South Korea. In addition, we can consider a scenario in which China reduced its transboundary

PM2.5 by 18.32 µg/m3 , which was the average reduction in PM2.5 for cities with the highest in-China ratio

in Figure 7. In this case, the benefit would have been $4.98 billion per year for South Korea. While there

may be many other obstacles to employ the Coasian bargaining in practice, the results in Table 7 provide
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key measurements for these countries to consider whether a certain form of agreement and compensation

scheme on transboundary air pollution can be worth the consideration.19

5 Conclusion

In this study, we develop a framework that integrates recent advances in atmospheric science into econo-

metric estimation with microdata on mortality and health to study the international spillover effects of air

pollution. Combining transboundary particle trajectory data with the universe of individual-level mortality

and emergency department visit data in South Korea, we find that transboundary air pollution from China

significantly increases mortality and morbidity in South Korea. Using our estimates, we quantify that a

recent Chinese environmental regulation “the war on pollution” had a substantial international spillover

benefit. Finally, we examine China’s strategic pollution reductions and provide their implications for the

potential Coasian bargaining.

19The average PM2.5 level in China during our sample period was 45.05 µg/m3 , which is still very high compared to the level
that was recommended by the World Health Organization in its global air quality guidelines in 2019 (10 µg/m3 for the annual
mean).
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Figures

Figure 1: PM2.5 in China and South Korea
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Note: This figure illustrates the evolution of monthly average hourly PM 2.5. The Northwest region in South Korea is defined
as cities in South Korea that have more than or equal to 35% of frequency of trajectories coming from China in Figure 3. The
Southwest region in South Korea is defined as cities with less than 35% of frequency of trajectories coming from China.
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Figure 2: Examples of Backward Trajectories
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Note: This figure shows three examples of the backward trajectories obtained from HYSPLIT. For example, the green trajectory
came from northern China, passed through Beijing, and reached Seoul at 11 pm on January 14, 2016.
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Figure 3: Frequency of Trajectories Coming from China

Note: This figure shows the percentage of hours in which each city in South Korea had trajectories coming from China during our
sample period (January 2015 to December 2019). For each city in South Korea, we use the HYSPLIT model to obtain backward
trajectories for each day-hour. We then compute the percentage of the backward trajectories that came from China. That is, the
denominator is the total number of hours from January 1, 2015 to December 31, 2019, and the numerator is the total number of
hours in which the trajectories came from China. The duration of the backward trajectories we use is 200 hours. For example, if
this value is 50% for a city in South Korea, it means that in half of the total hours in our sample period, this city had the trajectories
coming from China.
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Figure 4: Paths of Trajectories that Traveled Through China and Reached South Korea
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Note: This figure shows how often each city in China had a trajectory that passed the city and reached South Korea. For each city in
South Korea, we use the HYSPLIT model to obtain backward trajectories for each day-hour during our sample period (January 2015
to December 2019). We then compute how often these backward trajectories passed each city in China. That is, the denominator
is the total number of hours from January 1, 2015 to December 31, 2019. The numerator is the total number of hours in which a
trajectory passed a city in China and reached cities in South Korea. The duration of the backward trajectories we use is 200 hours.
For example, if this value is 5% for a city in China, it means that in 5% of the total hours in our sample period, a trajectory passed
this city and reached a city in South Korea.
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Figure 5: Scatter Plot of PM2.5 in South Korea and Transboundary PM2.5 from China
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Panel B: Residuals
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Note: Panel A plots the mean of PM 2.5 within each bin against bins of transboundary PM 2.5 with bins of size 1. Panel B plots
the mean of residuals (from a regression of PM 2.5 in South Korea on city-by-year-by-month fixed effects, city-by-day of week
fixed effects, city-by-rainfall quartile fixed effects, and city-by-temperature quartile fixed effects) against bins of residuals (from
a regression of transboundary PM 2.5 on city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall
quartile fixed effects, and city-by-temperature quartile fixed effects).
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Figure 6: Weekly Lagged Effects of the Transboundary Air Pollution on Mortality
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Note: This figure plots the estimates and 95% confidence intervals presented in Panel B of Table 3. Each point estimate indicates
the partial lagged marginal effect of Transboundary PM2.5 (from China to Korea) on hourly mortality per billion people in South
Korea.
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Figure 7: Testing for Strategic Air Pollution Reductions in China
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Note: This figure plots the change in PM2.5 relative to 2015 level for Chinese cities by the quartile groups of in-China ratio. The
in-China ratio is calculated by the following approach. For each city, day, and hour, we use HYSPLIT model to obtain forward air
pollution trajectories. We then compute the in-China ratio based on the number of trajectories that entered China divided by the
total number of trajectories. A pollution trajectory is considered to have fallen within China if the trajectory falls inside the latitude
and longitude boundaries of China or if the trajectory’s height is persistently below 1 km since the start of the forward trajectory.

31



Tables

Table 1: Summary Statistics

Mean Standard Deviation

PM2.5 (µg/m3) in Chinese cities 45.05 38.40

PM2.5 (µg/m3) in Korean cities 24.99 18.06

Transboundary PM2.5 (µg/m3) from China to Korean cities 14.19 27.52

Transboundary trajectory indicator variable (1 or 0) 0.39 0.49

Mortality in Korean cities (hourly deaths per billion people)

Overall 894 3800

Respiratory/Cardiovascular 231 1954

Infant (age < 1) 327 27702

Elderly (age ≥ 65) 3576 14197

Emergency Room Visits (daily visit counts per billion people)

Atopic 0.08 0.32

Rhinitis 3.27 5.68

Asthma 2.15 2.65

City-level population (in thousands)

Overall 232 240

Elderly (age ≥ 65) 32.16 25.27

Infant (age < 1) 1.68 1.91

Hourly Temperature (°C) 13.01 10.43

Hourly Precipitation (mm) 0.13 1.00

Note: This table reports summary statistics. All mortality rates are per billion population in the corresponding age group. Sample
includes all South Korean cities, and 784 Chinese cities over a period of January 2015 to December 2019.
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Table 2: First Stage: Impacts of Transboundary Air Pollution on Local Air Quality in South Korea

Dependent variable: Hourly PM2.5 in South Korean cities

(1) (2) (3) (4) (5)

Hourly Transboundary PM2.5 0.170 0.129 0.129 0.129 0.122
(0.003) (0.002) (0.002) (0.002) (0.002)

Constant 22.776
(0.221)

Observations 9160118 9107025 9107025 9107025 9107025
KP F-stat 3885 5730 5819 5774 5812
Year-Month-City FE No No Yes Yes Yes
Year-Month FE No Yes No No No
Month-City FE No Yes No No No
Day of week-City FE No Yes Yes Yes Yes
Rainfall quartile-City FE No Yes No Yes No
Temperature quartile-City FE No Yes No Yes No
Rainfall decile-City FE No No No No Yes
Temperature decile-City FE No No No No Yes
Rainfall quartile FE No No Yes No No
Temperature quartile FE No No Yes No No

Note: This table shows OLS estimation results for equation (1). Standard errors in parentheses are clustered by city. All models are
weighted by the city population. KP F-stat is Kleibergen-Paap rk Wald F statistic. Sample includes all South Korean cities between
January 2015 and December 2019.
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Table 3: Impacts of Transboundary Air Pollution on Mortality in South Korea (Reduced-form)

Panel A: Average Effect Over the Past 70 Days (Dependent variable: hourly mortality per billion people)
Respiratory/

cardiovascular Elderly Infant Overall

Transboundary PM 2.5 (past 0-70 days) 1.66 19.00 6.68 3.56
(0.17) (2.17) (3.33) (0.34)

Observations 9555368 9555368 9555368 9555368
Mean of dependent variable 148 3259 314 618
Marginal effect as % increase in mortality 1.1% 0.6% 2.1% 0.6%
Marginal effect on annual mortality/million 14.5 166.5 58.5 31.2

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)
Respiratory/

cardiovascular Elderly Infant Overall

Transboundary PM2.5 (past 0-7 day) 0.14 1.35 0.90 0.28
(0.04) (0.48) (0.58) (0.07)

Transboundary PM2.5 (past 7-14 day) 0.21 1.93 0.37 0.34
(0.03) (0.47) (0.64) (0.07)

Transboundary PM2.5 (past 14-21 day) 0.25 3.16 2.02 0.55
(0.04) (0.45) (0.64) (0.07)

Transboundary PM2.5 (past 21-28 day) 0.25 3.59 -0.36 0.60
(0.03) (0.46) (0.59) (0.07)

Transboundary PM2.5 (past 28-35 day) 0.23 3.61 1.18 0.62
(0.04) (0.49) (0.70) (0.07)

Transboundary PM2.5 (past 35-42 day) 0.27 3.81 0.10 0.66
(0.04) (0.51) (0.69) (0.08)

Transboundary PM2.5 (past 42-49 day) 0.14 2.41 1.21 0.46
(0.03) (0.44) (0.75) (0.07)

Transboundary PM2.5 (past 49-56 day) 0.22 3.50 0.87 0.61
(0.03) (0.45) (0.70) (0.07)

Transboundary PM2.5 (past 56-63 day) 0.12 1.74 0.42 0.29
(0.03) (0.40) (0.57) (0.06)

Transboundary PM2.5 (past 63-70 day) 0.09 -0.09 0.67 0.07
(0.03) (0.42) (0.64) (0.06)

Observations 9555318 9555318 9555318 9555318
Mean of dependent variable 148 3259 314 618

Note: This table shows OLS estimation results for equation (2). Standard errors in parentheses are clustered by city. The dependent
variable is hourly mortality per billion people in each category. All regressions include city-by-year-by-month fixed effects, city-
by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted by
city-level population. Sample includes all South Korean cities between January 2015 and December 2019.
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Table 4: Impacts of Local Air Quality on Mortality in South Korean Cities (IV Estimation)

Panel A: Average Effect Over the Past 70 Days (Dependent variable: hourly mortality per billion people)
Respiratory/

cardiovascular Elderly Infant Overall

PM 2.5 (past 0-70 days) 4.24 48.60 17.44 9.09
(0.47) (5.72) (8.63) (0.94)

Observations 9528960 9528960 9528960 9528960
Mean of dependent variable 148 3258 314 618
Marginal effect as % increase in mortality 2.9% 1.5% 5.5% 1.5%
Marginal effect on annual mortality/million 37.2 425.8 152.8 79.7

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)
Respiratory/

cardiovascular Elderly Infant Overall

PM2.5 (past 0-7 days) 0.37 4.05 2.08 0.78
(0.10) (1.37) (1.63) (0.21)

PM2.5 (past 7-14 days) 0.52 3.68 0.24 0.69
(0.09) (1.27) (1.67) (0.19)

PM2.5 (past 14-21 days) 0.62 7.10 5.15 1.23
(0.12) (1.42) (1.96) (0.22)

PM2.5 (past 21-28 days) 0.67 8.24 -1.41 1.37
(0.11) (1.52) (1.77) (0.23)

PM2.5 (past 28-35 days) 0.52 7.88 3.48 1.31
(0.10) (1.35) (1.83) (0.20)

PM2.5 (past 35-42 days) 0.66 9.77 0.12 1.63
(0.10) (1.29) (1.66) (0.20)

PM2.5 (past 42-49 days) 0.43 7.50 3.01 1.37
(0.10) (1.32) (1.94) (0.21)

PM2.5 (past 49-56 days) 0.78 13.01 3.78 2.23
(0.11) (1.37) (2.22) (0.23)

PM2.5 (past 56-63 days) 0.49 8.94 1.12 1.42
(0.09) (1.20) (1.74) (0.20)

PM2.5 (past 63-70 days) 0.21 -0.03 2.11 0.20
(0.08) (1.12) (1.61) (0.16)

Observations 9274063 9274063 9274063 9274063
Mean of dependent variable 148 3260 315 617

Note: This table shows instrumental variable estimation results for equation (3). Standard errors are clustered by city. The dependent
variable is hourly mortality per billion people in each category. All columns include city-by-year-by-month fixed effects, city-by-
day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted by
city-level population. The Kleibergen-Paap rk Wald F statistic is 1816 for all columns in Panel A and 356 for all columns in Panel
B. The sample periods are from January 2015 to December 2019.
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Table 5: Impacts of Transboundary Air Pollution on Mortality by Age Group

Panel A: Reduced Form (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

Transboundary PM 2.5 (past 0-70 days) 6.68 0.18 -0.14 0.04 0.94 0.61
(3.33) (0.17) (0.19) (0.26) (0.32) (0.45)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 2.1% 1.5% -0.8% 0.1% 1.2% 0.4%
Marginal effect on annual mortality/million 58.6 1.6 -1.3 0.3 8.2 5.3

50-59 60-69 70-79 80-89 90-99 100-109

Transboundary PM 2.5 (past 0-70 days) 2.70 4.60 13.85 39.63 110.42 185.48
(0.73) (1.23) (2.64) (7.78) (31.68) (173.36)

Mean of dependent variable 364 746 2313 7324 19368 16318
Marginal effect as % increase in mortality 0.7% 0.6% 0.6% 0.5% 0.6% 1.1%
Marginal effect on annual mortality/million 23.6 40.3 121.3 347.1 967.3 1624.8

Panel B: IV Estimation (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

PM 2.5 (past 0-70 days) 17.48 0.46 -0.35 0.09 2.43 1.61
(8.63) (0.43) (0.49) (0.66) (0.82) (1.16)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 5.6% 3.7% -2.0% 0.2% 3.1% 0.9%
Marginal effect on annual mortality/million 153.1 4.0 -3.1 0.8 21.3 14.1

50-59 60-69 70-79 80-89 90-99 100-109

PM 2.5 (past 0-70 days) 6.93 11.62 35.13 101.91 285.67 467.04
(1.92) (3.20) (6.75) (20.52) (81.68) (444.44)

Mean of dependent variable 364 746 2312 7322 19365 16323
Marginal effect as % increase in mortality 1.9% 1.6% 1.5% 1.4% 1.5% 2.9%
Marginal effect on annual mortality/million 60.7 101.8 307.7 892.8 2502.5 4091.3

Note: Panel A shows age-specific results for the OLS estimation in equation (2), and Panel B shows results for the instrumental
variable estimation in equation (3). Standard errors in parentheses are clustered by city. The dependent variable is hourly mortality
per billion people in each category. In the OLS estimation, all age groups have 9,555,368 observations, except for the age group
100-109, which has 9,537,950 observations. The age group 100-109 has fewer observations because the population for age over
100 is 0 for some years in some cities in the sample. In the IV estimation, all age groups have 9,528,950 observations, except for the
age group 100-109, which has 9,511,542 observations. All regressions include city-by-year-by-month fixed effects, city-by-day of
week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted by city-level
population. The Kleibergen-Paap rk Wald F statistic for Panel B is 1,814 for all age groups except for age group 100-109 (1,825).
The sample includes all South Korean cities between January 2015 and December 2019.
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Table 6: The Impact of Transboundary Air Pollution on Emergency Department Visits

Panel A: Reduced-form Estimation
Asthma Rhinitis Atopic

Transboundary PM 2.5 (past 0-60 days) 50.0 482.6 -2.8
(10.2) (54.3) (1.6)

Observations 235388 235388 235388
Mean of dependent variable 9228.3 14053.4 363.5
Marginal effect as % increase in ER visits 0.5% 3.4% -0.8%
Marginal effect on annual ER visits/million 18.3 176.1 -1.0

Panel B: Instrumental Variable Estimation
Asthma Rhinitis Atopic

PM 2.5 (past 0-60 days) 214.2 2066.7 -11.8
(45.6) (258.9) (6.7)

Observations 235388 235388 235388
Mean of dependent variable 9228.3 14053.4 363.5
Marginal effect as % increase in ER visits 2.3% 14.7% -3.2%
Marginal effect on annual ER visits/million 78.2 754.3 -4.3

Note: Standard errors, clustered by city, are reported in parentheses. All regressions include city-by-year-by-month fixed effects,
city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, city-by-humidity
quartile fixed effects, and are weighted by city-level population. Kleibergen-Paap rk Wald F statistic is 750 for all columns in the
IV estimation. The sample includes all South Korean cities between January 2015 and December 2017. The dependent variables
are the numbers of daily ED visits per billion people due to asthma, rhinitis, and atopic dermatitis, respectively. All columns in this
table includes controls for pollen variables (oak, pine and weed pollen). We include results without these control variables in Table
A.5, which suggests that results are robust to the exclusions of these control variables.
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Table 7: International Spillover Benefits of Reductions in Air Pollution ($ billion/year)

Overall Infant Youth Adult Elderly
< 1 1− 19 20− 64 ≥ 65

Status Quo:
Reduction of Transboundary PM2.5 by 9.63 µg/m3 2.62 0.12 0.04 1.50 0.97

Counterfactual Scenario 1:
Reduction of Transboundary PM2.5 by 14.07 µg/m3 3.83 0.18 0.05 2.19 1.41

Counterfactual Scenario 2:
Reduction of Transboundary PM2.5 by 18.3 µg/m3 4.98 0.23 0.07 2.85 1.83

Note: This table shows the internaitonal spillover benefits of reudctions in air pollution for three scenarios. The table reports the
per-year spillover benefit for South Korea in 2019 US billion dollars. We calculate the benefits based on the estimates of the
age-specific impacts of transboundary air pollution on mortality in Table and the age-specific value of a statistical life described in
Section 4. The status quo is based on the actual reduction in transboundary air pollution from China to South Korea observed in our
data during our sample period (9.63 µg/m3). The first counterfactual scenario is based on the national-average pollution reduction
in China during our sample period (14.07 µg/m3), and the second counterfactual scenario is based on the pollution reduction in
Chinese cities where most air pollution remained within China (18.3 µg/m3).
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Appendix A Details of the HYSPLIT model
In this section, we provide details of the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), an open-source
computer software for simulating atmospheric transport and dispersion.20

Brief description of the HYSPLIT model
Developed by the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory and the Australian Bureau
of Meteorology Research Centre in 1998, HYSPLIT computes trajectories of particles to determine how far and where particles
will travel. The model can also simulate particle dispersion and compute air concentrations. However, we focus our attention on
trajectory computation, because our study is concerned with determining whether pollutants in South Korea passed through China.
Particle dispersion is useful when estimating the effect of emission from point sources, such as factories and power plants.

To compute a forward trajectory or a backward trajectory, the model takes a coordinate and a height of a starting location, a
starting time, a trajectory duration, and other parameters as inputs and computes a trajectory of a single particle using the mean
wind speed and direction of each grid that the particle passes by.21 The forward trajectory is calculated by tracking the movement of
the air mass in time, whereas the backward trajectory is calculated by tracking the movement of the air mass back in time. Forward
trajectory analysis is useful for determining the particle dispersion, while back trajectory analysis is useful for determining the
origins of pollutants.

Figure A.1 shows how forward trajectories are calculated in the HYSPLIT model. Given the initial position P (t) and the
first-guess position P ′(t + ∆t) = P (t) + V (P, t)∆t where V (P, t) denote the velocity vector, V (P, t) is linearly interpolated,
which is then used to obtain the final position:

P (t + ∆t) = P (t) +
V (P, t) + V (P ′, t + ∆t)

2
· ∆t.

Backward trajectories are calculated using the same procedure, except that ∆t is now negative.

20The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport
and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this publication. See Stein et al.
(2015) for more information on HYSPLIT.

21For the meteorological data for the HYSPLIT model, we use the NCEP/NCAR Reanalysis data, available from 1948 to
present. The NCEP/NCAR Reanalysis data set is a continuously updated globally gridded data set that is jointly produced by the
National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR). This data set
is a product of a data assimilation project where the initial states of the atmosphere are “reanalyzed” by incorporating historical
observations and using a numerical weather prediction (NWP) model from 1948 to present. This data set has a 2.5° × 2.5° spatial
resolution with a timestamp of six hours.
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Figure A.1: Description of the Trajectory Equation
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Comparison between different methods of analysis in the HYSPLIT model
The purpose of using the HYSPLIT model is to determine whether pollution in South Korea at a given time comes from China. To
address this question, we explored a number of possible options using the HYSPLIT model.

First, we discuss the benefits and limitations of forward and backward trajectory analyses. Forward trajectory analysis is
useful for determining emission paths or dispersion of pollutants from a point source. For example, Hernandez-Cortes and Meng
(2023) computes concentrations of air pollutants for each zip code and year by running forward trajectory simulations from each
facility in California. To address our research question, one may imagine running forward trajectory simulations from polluting
facilities in China. This method of analysis has its appeals, because we would then be able to determine the effect of anthropogenic
transboundary air pollution from Chinese factories and power plants.

However, our research question is to determine the effect of transboundary air pollution from China, which would also include
ambient air pollution from the use of coals for heating in winter. Then to capture all the possible paths of pollution flow from China
to South Korea, we would ideally simulate forward trajectories from all the coordinates in China. However, we face a number
of issues creating the instrument this way. First, simulating from all the coordinates in China at various levels of height makes it
computationally less tractable. Second, these forward trajectories may not fully capture all the possible paths of transboundary air
movements due to discrete starting points of trajectory simulation.

Backward trajectory analysis is useful for determining the source locations of pollutants. For our research question, we can
track back in time trajectories that are simulated from South Korea to determine whether the trajectories reach China. This method
is computationally less intensive than the first method, because trajectories can be simulated from each South Korean city at a given
height.

However, this method also has limitations. Simulating backward trajectories with a given duration is based on the assumption
that pollutants have travelled for that given duration; that is, we cannot determine whether pollution originated from China. This
is a valid concern in that we cannot ascertain exact sources of air pollution that arrive at South Korea if there are multiple possible
polluting sources in the region. However, this is not a grave concern for our study, because we are interested in knowing whether air
pollution in South Korea passed through China, not whether it originated from China. It is possible that the effect of transboundary
air pollution picked up pollution from other neighboring countries of China. Fortunately, there is only the Yellow Sea between
South Korea and China, and we can safely assume that there are no polluting sources in the Yellow Sea.

Another limitation is that trajectories of particles from two different source locations may intersect at a city in South Korea, and
computing backward trajectories may not correctly identify the source locations. However, this is the limitation of the HYSPLIT
model that exists in both forward and backward trajectory analyses. The trajectory calculation relies on the mean wind speed
and wind direction at the grid point, and the advection of a particle is computed using the mean of the three-dimensional velocity
vectors obtained from the input meteorological conditions. Thus, the trajectory analysis in the HYSPLIT model provides the
average locations of the particle back in time, which we believe is a good approximation of the mean locations of the pollutants
observed at the pollution monitor in South Korean cities back in time.

Appendix: page-2



One may then ask whether particle dispersion can address our research question better than trajectory calculation. HYSPLIT
introduces particle dispersion by calculating the trajectory for many points. However, each trajectory changes its course by the
random atmospheric turbulence along its path (where the random shock is provided within the HYSPLIT model), creating dispersion
among particles. Due to this way of computation, particle dispersion results in the arrival of a fewer particles as the distance
between the source and the destination increases. Thus, we decided that computing backward trajectories is the most suitable way
to determine whether air pollution in South Korea at a given time passed through China some time ago in expectation.

Construction of instrumental variables using the HYSPLIT model
To construct instrumental variables, we run backward trajectory simulations in the HYSPLIT model. We compute 200-hour back-
ward trajectories 500 meters off the ground every hour for each South Korean city from January 2015 to December 2019, running
6.57 million trajectories in total (24 hourly trajectories/day × 365 days/year × 5 years × 228 cities in South Korea).

The height of 500 meters was selected, because if a trajectory starts at a height close to the ground level will most likely not
travel anywhere. In atmospheric science, the height of 850 mb (which is about 1 to 1.2 km above surface) is typically used, because
if an air parcel reaches that level, the dynamics of the atmospheric boundary layer will bring the parcel down to surface.

We create two instruments using the HYSPLIT model (denote them Z1 and Z2). Z1
ct takes a value of 1 if the 200-hour

backward trajectory that is simulated at a South Korean city c at time t reaches China and 0 otherwise. We define that a backward
trajectory reaches China if the particle enters the Chinese boundary under the specified height (we use 1 km for the default height,
but we test other heights for robustness checks) during the duration of 200 hours. We repeat backward trajectory simulations for
every city c and hour t to obtain Z1.

Z2
ct is constructed by interacting Z1

ct with the PM 2.5 concentrations at the Chinese entry point of the backward trajectory. The
PM 2.5 concentrations are retrieved from the nearest monitor to the entry point in China. If the particle reaches China j hours ago,
then Z2

ct takes a value of the PM 2.5 concentration at that entry point at time t− j. It takes a value of 0 otherwise.
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Appendix B Additional Figures and Tables
In this online appendix, we provide additional figures and tables from our analysis.
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Figure A.2: Seasonality in Wind Speed and Direction in Seoul
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Note: The figure shows monthly percentage of each west wind direction in Seoul. Sample includes all South Korean cities between
January 2015 and December 2019.
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Figure A.3: Map of PM2.5 Monitor Locations

Note: This figure shows the locations of city coordinates available in the Chinese hourly PM2.5 concentrations data from Berkeley
Earth (Panel A) and the locations of monitors in the South Korean hourly PM2.5 concentrations data from the Korea Environment
Corporation (Panel B).
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Figure A.4: Location of Meteorological Monitoring Stations in South Korea

Note: This figure shows the locations of ground monitoring stations that collect meteorological data in South Korea.
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Figure A.5: Histogram of the Duration of Trajectories from China to South Korea
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Note: We define the duration of a trajectory as the number of hours it took from the last grid point in China to a city in South Korea.
Sample includes trajectories from all South Korean cities between January 2015 and December 2019. The mean is 52, and the
median is 38. The 25th percentile is 22, and the 75th percentile is 69.

Appendix: page-8



Table A.1: PM2.5 Concentrations by Season and Province

Province Spring Summer Fall Winter

South Korea
Busan 28.34 22.13 21.63 28.45
Chungcheongbuk-do 29.5 16.85 24.22 34.37
Chungcheongnam-do 26.31 19.71 25.22 30.87
Daegu 25.39 20.02 22.65 29.83
Daejeon 26.17 16.51 20.91 28.48
Gangwon-do 28.62 18.6 20.07 30.57
Gwangju 25.78 18.86 22.74 26.3
Gyeonggi-do 30.58 18.47 23.08 33.55
Gyeongsangbuk-do 26.15 17.84 21.88 27.74
Gyeongsangnam-do 25.81 21.77 20.55 25.94
Incheon 29.15 21.62 23.42 29.16
Jeju 23.52 17.01 18.1 22.02
Jeollabuk-do 31.84 21.27 27.05 33.38
Jeollanam-do 25.68 20.42 20.81 25.46
Sejong 25.4 18.81 19.74 27.3
Seoul 28.3 20.3 20.7 28.84
Ulsan 28.13 23.25 20.64 25.05

China
Anhui 52.96 33.04 49.19 81.01
Beijing 58.97 43.09 56.18 77.06
Chongqing 41.73 31.19 39.54 75.36
Fujian 31.25 20.29 24.3 35.48
Gansu 39.19 26.39 32.32 53.25
Guangdong 31.97 21.35 33.29 44.03
Guangxi 36.09 23.52 35.44 54.8
Guizhou 34.34 22.19 30.01 48.53
Hainan 21.69 13.37 20.53 29.16
Hebei 60.99 46.93 62.16 97.66
Heilongjiang 33.55 19.67 36.27 52.41
Henan 63.15 41.88 59.75 111.45
Hubei 51.77 32.43 47.62 89.75
Hunan 43.25 27.97 43.51 72.01
Inner Mongolia 32.11 23.93 30.93 42.54
Jiangsu 51.55 33.27 43.17 76.26
Jiangxi 40.41 27.19 38.98 60.22
Jilin 38.63 22.61 39.55 59.39
Liaoning 45.51 29.36 43.94 62.56
Ningsia Hui Autonomous Region 43.87 32.22 44.12 61.5
Qinghai 43 29.9 39.32 62.99
Shaanxi 49.16 32.18 50.34 96.04
Shandong 57.5 37.97 55.16 92.17
Shanghai 47.04 32.73 37 62.76
Shanxi 52.63 41.77 54.48 87.54
Sichuan 44.03 28.74 38.03 74.6
Tianjin 62.84 46.11 61.11 85.08
Tibet 22.53 15.25 20.13 27.89
Xinjiang 62.22 34.79 43.65 76.96
Yunnan 32.04 18.95 22.76 31.77
Zhejiang 41.82 26.54 34.16 57.99
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Table A.2: Robustness Check for the Choices of Different Control Variables for Reduced Form estimation

(1) (2) (3) (4) (5)

Transboundary PM2.5 (past 0-7 day) 0.14 0.15 0.14 0.07 0.07
(0.04) (0.04) (0.04) (0.04) (0.04)

Transboundary PM2.5 (past 7-14 day) 0.21 0.22 0.21 0.12 0.12
(0.03) (0.03) (0.03) (0.03) (0.03)

Transboundary PM2.5 (past 14-21 day) 0.25 0.27 0.25 0.14 0.14
(0.04) (0.04) (0.04) (0.03) (0.03)

Transboundary PM2.5 (past 21-28 day) 0.25 0.27 0.26 0.14 0.14
(0.03) (0.03) (0.03) (0.03) (0.03)

Transboundary PM2.5 (past 28-35 day) 0.23 0.24 0.24 0.11 0.11
(0.04) (0.04) (0.04) (0.04) (0.04)

Transboundary PM2.5 (past 35-42 day) 0.27 0.29 0.28 0.16 0.15
(0.04) (0.04) (0.04) (0.03) (0.03)

Transboundary PM2.5 (past 42-49 day) 0.14 0.16 0.15 0.04 0.04
(0.03) (0.03) (0.03) (0.03) (0.03)

Transboundary PM2.5 (past 49-56 day) 0.22 0.23 0.23 0.13 0.13
(0.03) (0.03) (0.03) (0.03) (0.03)

Transboundary PM2.5 (past 56-63 day) 0.12 0.13 0.12 0.06 0.06
(0.03) (0.03) (0.03) (0.03) (0.03)

Transboundary PM2.5 (past 63-70 day) 0.09 0.10 0.09 0.05 0.05
(0.03) (0.03) (0.03) (0.03) (0.03)

Observations 9555318 9555318 9555318 9555318 9555318
Dependent variable mean 148 148 148 148 148
Year-Month-City FE Yes Yes Yes No No
Year-Month FE No No No Yes Yes
Month-City FE No No No Yes No
Month-Province FE No No No No Yes
Year FE No No No No No
Moth FE No No No No No
City FE No No No No Yes
Day of week-City FE Yes Yes Yes Yes No
Rainfall quartile-City FE Yes No No Yes Yes
Temperature quartile-City FE Yes No No Yes Yes
Rainfall decile-City FE No Yes No No No
Temperature decile-City FE No Yes No No No
Rainfall quartile FE No No Yes No No
Temperature quartile FE No No Yes No No

Note: This table shows results for column Column 1 in Table 3 with different choices of control variables. See notes in Table
3. Column 1 in this table replicates column 1 in Table 3, and we show results with with different choices of control variables in
columns 2 to 5.
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Table A.3: Robustness Check for the Choices of Different Control Variables for the IV estimation

(1) (2) (3) (4) (5)

Hourly PM2.5 (past 0-7 days) 0.37 0.38 0.37 0.35 0.35
(0.10) (0.10) (0.10) (0.14) (0.13)

Hourly PM2.5 (past 7-14 days) 0.52 0.54 0.53 0.48 0.48
(0.09) (0.09) (0.09) (0.11) (0.11)

Hourly PM2.5 (past 14-21 days) 0.62 0.67 0.64 0.58 0.58
(0.12) (0.12) (0.12) (0.14) (0.14)

Hourly PM2.5 (past 21-28 days) 0.67 0.73 0.70 0.64 0.64
(0.11) (0.12) (0.11) (0.14) (0.13)

Hourly PM2.5 (past 28-35 days) 0.52 0.55 0.55 0.53 0.53
(0.10) (0.10) (0.10) (0.18) (0.17)

Hourly PM2.5 (past 35-42 days) 0.66 0.70 0.68 0.68 0.67
(0.10) (0.10) (0.10) (0.15) (0.14)

Hourly PM2.5 (past 42-49 days) 0.43 0.47 0.47 0.46 0.44
(0.10) (0.10) (0.10) (0.17) (0.16)

Hourly PM2.5 (past 49-56 days) 0.78 0.82 0.82 0.82 0.80
(0.11) (0.11) (0.11) (0.20) (0.19)

Hourly PM2.5 (past 56-63 days) 0.49 0.54 0.51 0.54 0.53
(0.09) (0.09) (0.09) (0.16) (0.15)

Hourly PM2.5 (past 63-70 days) 0.21 0.23 0.21 0.26 0.27
(0.08) (0.08) (0.08) (0.11) (0.11)

Observations 9,274,063 9,274,063 9,274,063 9,274,063 9,274,063
Dependent variable mean 148 148 148 148 148
KP F-stat 356 357 355 5 6
Year-Month-City FE Yes Yes Yes No No
Year-Month FE No No No Yes Yes
Month-City FE No No No Yes No
Month-Province FE No No No No Yes
Year FE No No No No No
Moth FE No No No No No
City FE No No No No Yes
Day of week-City FE Yes Yes Yes Yes No
Rainfall quartile-City FE Yes No No Yes Yes
Temperature quartile-City FE Yes No No Yes Yes
Rainfall decile-City FE No Yes No No No
Temperature decile-City FE No Yes No No No
Rainfall quartile FE No No Yes No No
Temperature quartile FE No No Yes No No

Note: This table shows results for column Column 1 in Table 4 with different choices of control variables. See notes in Table
4. Column 1 in this table replicates column 1 in Table 4, and we show results with with different choices of control variables in
columns 2 to 5.
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Table A.4: Robustness check of HYSPLIT to Choices of Different Starting Heights from South Korea

Dependent variable: Hourly PM2.5 in South Korean cities

(1) (2) (3) (4) (5)

Hourly Transboundary PM2.5 (from 100m) 0.049
(0.003)

Hourly Transboundary PM2.5 (from 250m) 0.069
(0.002)

Hourly Transboundary PM2.5 (from 500m) 0.100
(0.003)

Hourly Transboundary PM2.5 (from 750m) 0.117
(0.003)

Hourly Transboundary PM2.5 (from 1000m) 0.110
(0.004)

Observations 1553456 1560982 1573289 1585100 1593754
KP F-stat 355 1023 1560 1551 978

Note: Standard errors, clustered by city, are reported in parentheses. All regressions include city-by-year-by-month fixed effects,
city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted
by city-level population. KP F-stat is Kleibergen-Paap rk Wald F statistic. Sample includes top 50 cities (in terms of number of
deaths in 2018) between March 2015 and December 2018.
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Table A.5: The Impact of Transboundary Air Pollution on Emergency Department Visits (with and without
Controls for Pollen)

Panel A: Reduced-form Estimation
Asthma Asthma Rhinitis Rhinitis Atopic Atopic

Transboundary PM2.5 (past 0-60 days) 28.0 50.0 437.4 482.6 -3.5 -2.8
(9.7) (10.2) (51.4) (54.3) (1.5) (1.6)

Observations 235388 235388 235388 235388 235388 235388
Mean of dependent variable 9228.3 9228.3 14053.4 14053.4 363.5 363.5
Marginal effect on ER visits (%) 0.3% 0.5% 3.1% 3.4% -1.0% -0.8%
Control for pollens No Yes No Yes No Yes

Panel B: Instrumental Variable Estimation
Asthma Asthma Rhinitis Rhinitis Atopic Atopic

PM2.5 (past 0-60 days) 128.8 214.2 2014.2 2066.7 -16.3 -11.8
(45.7) (45.6) (266.0) (258.9) (7.0) (6.7)

Observations 235388 235388 235388 235388 235388 235388
Mean of dependent variable 9228.3 9228.3 14053.4 14053.4 363.5 363.5
Marginal effect on ER visits (%) 1.4% 2.3% 14.3% 14.7% -4.5% -3.2%
Control for pollens No Yes No Yes No Yes

Note: This table shows results presented in Table 6 with and without controls for pollen variables. See notes in 6.
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Table A.6: Dependent Variable: PM2.5 in China at the city-year-month-day level

(1) (2) (3) (4)

Annual trend -4.29 -2.52
(0.12) (0.16)

Annual trend × in-China ratio -8.70 -8.69
(0.98) (0.98)

Annual trend × Quartile 2 of in-China ratio -1.71 -1.71
(0.21) (0.21)

Annual trend × Quartile 3 of in-China ratio -1.70 -1.71
(0.28) (0.28)

Annual trend × Quartile 4 of in-China ratio -3.52 -3.51
(0.36) (0.36)

N 1328053 1328026 1328053 1328026
Mean of dependent variable 47.83 47.83 47.83 47.83
City FE Yes Yes Yes Yes
Time FE No Yes No Yes

Note: In-China ratio is divided into quartile groups for columns (3) and (4). Quartile 1 has the lowest in-China ratio. Standard
errors, clustered by city, are reported in parentheses. Time fixed effect is at the level of year-month-day. All regressions are weighted
by city-level population. Sample includes all South Korean cities between January 2015 and December 2019.

Appendix: page-14



Table A.7: Value of remaining life for each age group in South Korea

Age Group VSL

0 (infant) 509,122
1 − 9 519,632
10 − 19 542,066
20 − 29 569,630
30 − 39 559,651
40 − 49 488,678
50 − 59 366,400
60 − 69 233,030
70 − 79 124,647
80 − 89 57,094
90 − 99 23,995
100 − 109 10,200

Note: The values of remaining life for each group are obtained from Figure 3 in Murphy and Topel (2006). The figure includes
values of remaining life by sex for each age between 0 and 110, using the mean VSL value of $6.3 million. These age-specific VSL
estimates are averaged within each age group, divided by the mean VSL value of $6.3 million, and then multiplied by the average
South Korean VSL estimate obtained in 4.1.
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