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Targeting has become a central interest in policy design

• Many policies are costly. Budgets are limited.

• How to maximize a policy’s impact given a limited budget?

• Policymakers could target individuals who generate large welfare gains

• Examples:
I Job training program (Kitagawa and Tetenov, 2018)

I SNAP (Finkelstein and Notowidigdo, 2019)

I Disability program (Deshpande and Li, 2019)

I Energy efficiency (Burlig, Knittel, Rapson, Reguant, and Wolfram, 2020)

I Behavioral nudge (Knittel and Stolper, 2019)

I Dynamic electricity pricing (Ito, Ida, and Tanaka, forthcoming)
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Two competing views: Observables vs. Self-selection

1. Targeting based on observables
I Policymakers can use observable information (X ) to target individuals
I Machine learning techniques can be used to find “who should be treated”
I e.g. Kitagawa and Tetenov (2018), Athey and Wager (2021)

X1,i=JC

X2,i=JC

X3,i=JC
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Two competing views: Observables vs. Self-selection
1. Targeting based on observables

I Policymakers can use observable information (X ) to target individuals
I Machine learning techniques can be used to find “who should be treated”
I e.g. Kitagawa and Tetenov (2018), Athey and Wager (2021)

2. Targeting through self-selection
I Individuals’ self-selection may have important (unobservable) information
I Policymakers could take advantage of this self-selection
I e.g., Alatas, Purnamasari, Wai-Poi, Banerjee, Olken, and Hanna (2016),

Ito, Ida, and Tanaka (forthcoming)
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A priori, it is not clear which approach works better

The bottom line is that one should be skeptical of broad assertions
that individuals are better informed than planners and hence make
better decisions. Of course, skepticism of such assertions does not
imply that planning is more effective than laissez-faire. Their rela-
tive merits depend on the particulars of the choice problem.

from “Public Policy in an Uncertain World”
by Charles F. Manski (2013)
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Our idea: Build an algorithm that takes advantage of both

1. Setting: A costly treatment that could generate a social welfare gain
I Field experiment: A peak-hour rebate program for energy conservation
I Benefit: A reduction in DWL if a participant actually conserves energy
I Cost: Implementation cost per participating household

2. Use an RCT & the Empirical Welfare Maximization (EWM) to identify
I Consumer type x ∈ X who should be “treated”
I Consumer type x ∈ X who should be “untreated”
I Consumer type x ∈ X who should “decide by themselves”

3. Test hypotheses: What policy rule can maximize policy impacts?
I Targeting based on observables vs. targeting through self-selection
I Optimal mix of these two approaches
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Conceptual Framework
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Setup

• Consider a net social welfare gain (W ) from a costly treatment

• Define three potential outcomes (heterogeneous across individuals)
I WT : a potential outcome if an individual is treated
I WU : a potential outcome if an individual is untreated
I WS : a potential outcome if an individual self-selects

• Which outcome is the best for a social planner? It is ambiguous.
I WU can be best for those who generate gain lower than cost
I WS can be useful if self-selection works in line with a planner’s goal
I WS can be worse if self-selection is adverse to a planner’s goal

• Challenge: Potential outcomes are unobservable

• Can we use an RCT to identify best assignment for each type x ∈ X?
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Optimal targeting

• The planer assigns each individual to one of three arms “T”, “U”, “S”
depending on the observed information x ∈ X .

• Gj ⊆ X (j = T ,U,S): A set of x such that any individual with x ∈ Gj

is assigned the arm j .

• Targeting policy G ≡ (GT ,GU ,GS), a partition of X .

• The average welfare contribution under a targeting policy G :

W(G ) ≡ E

 ∑
j∈{T ,U,S}

Wj · 1{X ∈ Gj}

 .
• Goal: Find an optimal policy G ∗ that maximizes the average welfare

contribution.
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Empirical Welfare Maximization (EWM) method

• RCT (or quasi-experimental) data: {(Wi ,Zi ,Xi ) : i = 1, . . . , n} where
Zi ∈ {T ,U,S} is randomly assigned.

• With random assignment, the empirical analogue of W(G ) is

Ŵ(G ) =
1

n

n∑
i=1

∑
j∈{T ,C ,S}

(
Wi · 1{Zi = j}
P(Zi = j | Xi )

· 1{Xi ∈ Gj}
)
.

• EWM method (Kitagawa and Tetenov, 2018): With a pre-specified
class of feasible policies G, estimate the optimal policy over G by

Ĝ ∈ arg max
G∈G
Ŵ(G ).

• We use a class of policy trees (Zhou, Athey, Wager, 2022) for G.
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Policy tree
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Mechanism behind the optimal targeting

• The LATE framework (Imbens and Angrist, 1994) can be used to
uncover the mechanism behind our approach

• We define the LATEs for “takers” and “non-takers”
I DS ∈ {0, 1} is an individual’s treatment take-up when they self-select.
I (WT ,WU) are the treated and untreated potential outcomes.
I CLATE for takers: E [WT −WU |DS = 1, x ].
I CLATE for non-takers: E [WT −WU |DS = 0, x ].

• Suppose that the exclusion restriction holds:

WS = WT · 1{DS = 1}+ WU · 1{DS = 0}

• Note: Exclusion restriction is required to estimate the optimal policy
but helpful to investigate the mechanism
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Mechanism behind the optimal targeting

• For individuals with type x ,

E [WT | x ] ≥ E [WU | x ]⇔ E [WT −WU | x ]︸ ︷︷ ︸
CATE(x)

≥ 0;

E [WS | x ] ≥ E [WU | x ]⇔ E [WT −WU | DS = 1, x ]︸ ︷︷ ︸
CLATEtaker (x)

≥ 0.

E [WS | x ] ≥ E [WT | x ]⇔ E [WT −WU | DS = 0, x ]︸ ︷︷ ︸
CLATEnon-taker (x)

≤ 0;

• Using these properties, we can show:
I T is best ⇔ CATE (x) ≥ 0 and CLATEnon-taker (x) ≥ 0;
I U is best ⇔ CATE (x) ≤ 0 and CLATEtaker (x) ≤ 0;
I S is best ⇔ CLATEtaker (x) ≥ 0 and CLATEnon-taker (x) ≤ 0.

• We use our RCT data to estimate these LATEs to show this
relationship in our empirical analysis
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Field Experiment and Data
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Field experiment

1. Treatment: A peak-hour rebate program for residential electricity use
I Partner: Japanese Ministry of the Environment
I Peak-hour: 1 pm to 5 pm in critical peak days in summer 2020
I Baseline: Average hourly usage in the same hours before experiment
I Customers were unaware of baseline until experiment began
I All customers were on “non-dynamic retail prices”
I Rebate = $1/kWh conservation ≈ peak-hour wholesale price
I Implementation cost per consumer = 291.1 JPY (≈ cents)
I Welfare gain = a reduction in DWL − implementation cost

2. Experimental sample: 3,870 households in Japan
I Not a random sample of population
I Recruitment by mail and email

3. Randomization:
I Control: 1,577, Treatment: 1,486, Opt-in: 807

17 / 43



Balance check

Tables

Table 1: Summary Statistics and Balance Check

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Untreated Treated Selection U vs. T U vs. S T vs. S
(Z = U ) (Z = T ) (Z = S)

Peak hour usage (Wh) 192 190 189 2.57 2.87 0.29
[141] [138] [134] (5.03) (5.91) (5.93)

Pre-peak hour usage (Wh) 179 176 180 3.79 �1.11 �4.89
[137] [135] [142] (4.92) (6.07) (6.11)

Post-peak hour usage (Wh) 299 297 293 1.94 6.02 4.08
[175] [171] [174] (6.26) (7.54) (7.56)

Number of people at home 2.48 2.44 2.47 0.04 0.01 �0.03
[1.24] [1.24] [1.27] (0.04) (0.05) (0.06)

Self-efficacy in energy 3.45 3.46 3.49 �0.01 �0.04 �0.02
conservation (1-5 scale) [0.85] [0.85] [0.83] (0.03) (0.04) (0.04)

Household income 645 613 637 31.69 8.45 �23.23
(JPY 10,000) [399] [362] [391] (13.75) (17.06) (16.67)

All electric 0.32 0.31 0.30 0.01 0.02 0.00
[0.47] [0.46] [0.46] (0.02) (0.02) (0.02)

Number of air conditioners 3.14 3.11 3.08 0.03 0.05 0.02
[1.69] [1.71] [1.67] (0.06) (0.07) (0.07)

Number of fans 2.80 2.73 2.77 0.07 0.04 �0.04
[1.63] [1.63] [1.56] (0.06) (0.07) (0.07)

Number of household members 2.76 2.73 2.75 0.04 0.01 �0.03
[1.27] [1.27] [1.28] (0.05) (0.06) (0.06)

Total living area (m2) 107.29 105.51 103.42 1.78 3.87 2.09
[48.57] [49.61] [46.14] (1.78) (2.03) (2.07)

Notes: Columns 1-3 present the sample mean and standard deviations in blackets for the pre-experiment consumption data and
demographic variables by randomly-assigned group: untreated (Z = U ), treated (Z = T ), and selection (Z = S). Columns 4-6
show the difference in the sample means with the standard error of the difference in parentheses. The number of households are
1,577 (U ), 1,486 (T ), and 807 (S). The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.

33
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Impacts on ln(peak-hour usage): ITT analysis

Peak hour usage
− Pre-peak hour usage

(in pre-experiment)

All Low High

100% Treatment -0.097 -0.108 -0.079
(0.021) (0.028) (0.031)

100% Opt-in -0.052 -0.022 -0.073
(0.027) (0.034) (0.041)

Observations 1,176,480 588,240 588,240
p-value (T = O) 0.088 0.013 0.880
Opt-in rate 37.17 36.92 37.44

• Note that this is the impact on consumption, not the net welfare gain

• Suggests there is important heterogeneity by consumer type x ∈ X

• Standard errors are clustered at the customer level
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More evidence on heterogeneity by X : ITT analysis

Number of people at home Interested in
in peak hours energy conservation

Low High Low High

100% Treatment -0.096 -0.098 -0.134 -0.057
(0.027) (0.034) (0.028) (0.031)

100% Opt-in -0.022 -0.094 -0.036 -0.072
(0.034) (0.042) (0.035) (0.040)

p-value (T = O) 0.020 0.934 0.004 0.715
Opt-in rate 37.64 36.57 33.83 40.55

• Suggests there is important heterogeneity by consumer type x ∈ X

• We will exploit this variation & EWM method to estimate optimal policy rule
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Optimal Assignment Policy and Welfare Gains
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Welfare gain

• Yj (j ∈ {T ,U, S}): Potential outcome of household’s peak-hour
electricity consumption (kWh) in experimental-period

• Dj ∈ {0, 1} (j ∈ {T ,U, S}): Household’s potential choice if the arm j
is assigned. (Note: DT = 1 and DU = 0 w.p.1.)

• Household’s potential welfare contribution:

Wj ≡ b︸︷︷︸
benefit

× (YU − Yj)︸ ︷︷ ︸
electricity conservation

− c︸︷︷︸
cost

× 1{Dj = 1}.

I j ∈ {T ,U,S}
I b: social welfare gain from a unit reduction in energy use
I c : implementation cost of the program.
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Optimal targeting policy

• Social Welfare of a targeting policy G = (GT ,GU ,GS):

W(G ) ≡ E

 ∑
j∈{T ,U,S}

Wj · 1{X ∈ Gj}

 .
• Goal: Find an optimal policy G ∗ that maximizes W(·).

• Observables (X ): electricity consumption in the pre-experimental
period; household income; number of people at home, self-efficacy in
energy conservation (scale 1-5)

• We apply EWM method with policy trees (depth 6): With a class of
decision trees G, estimate the optimal policy over G by

Ĝ ∈ arg max
G∈G
Ŵ(G ).
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We compare welfare gains form five policies

1. 100% untreated (baseline)
I Everyone is assigned to U

2. 100% treated
I Everyone is assigned to T

3. 100% self-selection
I Everyone is assigned to S

4. Selection-absent targeting (Ĝ †)
I Optimal assignment of (U, T )

5. Selection-driven targeting (Ĝ ∗)
I Optimal assignment of (U, T , S)
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Welfare Gains from Each Policy
Table 3: Welfare Gains from Each Policy

Policy Welfare Gain Share of customers in each arm

GU GT GS

100% untreated 0 100% 0.0% 0.0%
(—)

100% treated 120.7 0.0% 100% 0.0%
(98.8)

100% self-selection 180.6 0.0% 0.0% 100%
(112.1)

Selection-absent targeting (Ĝ†) 387.8 47.6% 52.4% 0.0%
(55.7)

Selection-driven targeting (Ĝ⇤) 553.7 23.9% 31.4% 44.7%
(68.0)

Notes: This table summarizes characteristics of three benchmark policies (100% untreated, 100% treated, and 100% self-selection),
selection-absent targeting (Ĝ†), and selection-driven targeting (Ĝ⇤). The column titled “Welfare Gain” shows the estimated ITT of
welfare gain in JPY per household per season, with its standard error in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in
the summer of 2020.

Table 4: Comparisons of Alternative Policies

Difference in Welfare Gains p-value

100% self-selection vs. 100% treated 59.9 0.293
(110.0)

Selection-absent targeting (Ĝ†) vs. 100% treated 267.2 0.004
(99.7)

Selection-absent targeting (Ĝ†) vs. 100% self-selection 207.3 0.038
(116.9)

Selection-driven targeting (Ĝ⇤) vs. 100% treated 433.0 0.000
(106.8)

Selection-driven targeting (Ĝ⇤) vs. 100% self-selection 373.1 0.000
(113.3)

Selection-driven targeting (Ĝ⇤) vs. Selection-absent targeting (Ĝ†) 165.8 0.003
(61.1)

Notes: This table compares welfare gains from each policy. For each row, the column “Difference in Welfare Gains” shows
the estimated welfare gain of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY
per household per season, with its standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis:
H0 : WL � WR. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.

35

• Selection-absent targeting assigns 47.6% to U and 52.4% to T

• Selection-driven targeting assigns 23.9% to U, 31.4% to T , and 44.7% to S
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Comparisons of Alternative Policies
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GU GT GS
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H0 : WL � WR. The monetary unit is given as 1 ¢ = 1 JPY in the summer of 2020.
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• Both targeting policies improve welfare compared to non-targeting policies

• Ĝ∗ further improves welfare compared to Ĝ †
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Table 5: Covariate Distribution by Optimally Assigned Group Ĝ⇤

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Ĝ⇤
U Ĝ⇤

T Ĝ⇤
S Ĝ⇤

U vs. Ĝ⇤
T Ĝ⇤

U vs. Ĝ⇤
S Ĝ⇤

T vs. Ĝ⇤
S

Peak hour usage (Wh) 203 180 191 23.03 11.98 �11.05
[146] [136] [135] (6.18) (5.79) (5.08)

Pre-peak hour usage (Wh) 198 167 175 30.56 23.08 �7.48
[150] [133] [132] (6.23) (5.86) (4.97)

Post-peak hour usage (Wh) 329 255 310 73.22 18.82 �54.40
[176] [176] [164] (7.67) (7.00) (6.41)

Number of people at home 2.87 2.27 2.38 0.60 0.48 �0.11
[1.34] [1.32] [1.08] (0.06) (0.05) (0.05)

Self-efficacy in energy 3.30 3.49 3.53 �0.19 �0.23 �0.04
conservation (1-5 scale) [1.02] [0.82] [0.75] (0.04) (0.04) (0.03)

Household income 787 597 572 190.12 215.11 25.00
(JPY 10,000) [433] [397] [318] (18.23) (16.15) (13.73)

All electric 0.36 0.25 0.33 0.11 0.03 �0.08
[0.48] [0.43] [0.47] (0.02) (0.02) (0.02)

Number of air conditioners 3.41 2.82 3.16 0.58 0.24 �0.34
[1.72] [1.66] [1.67] (0.07) (0.07) (0.06)

Number of fans 2.99 2.58 2.78 0.41 0.20 �0.21
[1.75] [1.57] [1.55] (0.07) (0.07) (0.06)

Number of household members 3.17 2.54 2.67 0.63 0.50 �0.13
[1.31] [1.36] [1.14] (0.06) (0.05) (0.05)

Total living area (m2) 115.41 97.16 106.73 18.25 8.68 �9.57
[47.77] [49.13] [47.37] (2.11) (1.94) (1.81)

Notes: This table shows the covariate distribution by group based on the optimal policy assignment Ĝ⇤. The last column shows
the difference in the sample means and its standard errors in parentheses. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.

36

28 / 43



Road map of the talk

1. Introduction

2. Conceptual Framework

3. Field Experiment and Data

4. Optimal Assignment Policy and Welfare Gains

5. Mechanism Behind the Optimal Policy Assignment

6. Welfare Maximization with Redistribution

7. Conclusion

29 / 43



Mechanism Behind the Optimal Policy Assignment
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Mechanism behind the optimal assingnment

• How does our algorithm improve the social welfare gains?

• We highlight that the LATE framework (Imbens and Angrist, 1994) can
be used to investigate the mechanism

• We define the LATEs for “takers” and “non-takers”
I DS ∈ {0, 1} is an individual’s treatment take-up when they self-select
I (WT ,WU) are the treated and untreated potential outcomes
I LATE for takers: E [WT −WU |DS = 1]
I LATE for non-takers: E [WT −WU |DS = 0]
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Mechanism behind the optimal assingnment

• Two key LATEs
I LATE for takers: E [WT −WU |DS = 1]
I LATE for non-takers: E [WT −WU |DS = 0]

• Random variation in (U, T , S) allows us to estimate both LATEs
I Use data from groups (U,S) to estimate the LATE for takers
I Use data from groups (T ,S) to estimate the LATE for non-takers

I Recall that we have random (U,T ,S) in each group (Ĝ∗U , Ĝ∗T ,Ĝ∗S )

→ We can estimates these LATEs in each group (Ĝ∗U , Ĝ∗T ,Ĝ∗S )

• These two LATEs play key roles in the optimal policy assignment
I In theory section, we show this point theoretically
I In empirical section, we use our RCT data to demonstrate it (next page)
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Mechanism: LATEs for takers and non-takersFigure 3: Mechanism Behind the Algorithm: The LATEs for Takers and Non-Takers
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Notes: This figure shows the estimation results in Section 5.1. For each of the three groups in the optimal assignment (x 2
Ĝ⇤

U , x 2 Ĝ⇤
T , x 2 Ĝ⇤

S), we estimate the LATE for takers (E[WT � WU |DS = 1]) and the LATE for non-takers (E[WT �
WU |DS = 0]) to investigate the mechanism behind the optimal assignment. In the figure, we show the point estimates with
the 95% confidence intervals. For example, for those who are assigned to the selection group (Ĝ⇤

S), the LATE for takers is
2062 and the LATE for non-takers is �823. This implies that self-selection is a useful tool for this group to let customers sort
into the treatment choice that is in line with the planner’s objective. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.
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• Ĝ∗S (individuals whose optimal assignment is S)
I LATE for takers is positive & LATE for non-takers is negative
I Self-selection improves social welfare
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Ĝ⇤

U , x 2 Ĝ⇤
T , x 2 Ĝ⇤

S), we estimate the LATE for takers (E[WT � WU |DS = 1]) and the LATE for non-takers (E[WT �
WU |DS = 0]) to investigate the mechanism behind the optimal assignment. In the figure, we show the point estimates with
the 95% confidence intervals. For example, for those who are assigned to the selection group (Ĝ⇤

S), the LATE for takers is
2062 and the LATE for non-takers is �823. This implies that self-selection is a useful tool for this group to let customers sort
into the treatment choice that is in line with the planner’s objective. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.
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• Ĝ∗T (individuals whose optimal assignment is T )
I Both of the LATEs for takers non-takers are positive
I Everyone should be treated & self-selection would lower social welfare
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Mechanism: LATEs for takers and non-takersFigure 3: Mechanism Behind the Algorithm: The LATEs for Takers and Non-Takers
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2062 and the LATE for non-takers is �823. This implies that self-selection is a useful tool for this group to let customers sort
into the treatment choice that is in line with the planner’s objective. The monetary unit is given as 1 ¢ = 1 JPY in the summer
of 2020.
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• Ĝ∗U (individuals whose optimal assignment is U)
I LATE for takers is negative and LATE for non-takers is near zero
I Everyone should be untreated & self-selection would lower social welfare
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Mechanism: Counterfactual ITTs

Consumer types based on

the optimal assignment rule Ĝ∗

Ĝ∗
U Ĝ∗

T Ĝ∗
S

Counterfactual ITT (if assigned to U) 0 0 0
(——) (——) (——)

Counterfactual ITT (if assigned to T ) −905.4 662.5 257.8
(157.8) (131.4) (117.5)

Counterfactual ITT (if assigned to S) −923.0 67.9 772.5
(166.7) (150.9) (119.7)

• We have randomly-generated (U,T ,S) within each group (Ĝ∗U , Ĝ∗T ,Ĝ∗S )

• This variation allows us to estimate counterfactual ITTs for each group

• Result: The counterfactual ITTs confirm the optimality of the assignment
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Welfare Maximization with Redistribution
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What about equity/re-distributions?

• Our main result uses the utilitarian social welfare function
I It maximizes efficiency gains but ignores equity

• Is there an equity-efficiency tarde-off?
I We can look at re-distributional consequence of the policy
I This table suggests higher-income households would receive more rebates

Efficiency gain Average rebate by the quartiles of household income

[0%,25%] (25%,50%] (50%,75%] (75%,100%]

Utilitarian (ν = 0) 553.7 72.8 93.7 144.1 148.9
(68.0) (10.3) (12.9) (19.1) (18.9)
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Welfare maximization with redistribution

• Our method is not restricted to a conventional utilitarian framework
I Any welfare function most appropriate for a policy goal can be used

• Consider a welfare function that balances the equity-efficiency trade-off
I This function is introduced by Saez (2002)
I Used by Allcott, Lockwood, and Taubinsky (2019) and Lockwood (2020)
I Weigh each household’s welfare by Pareto weight w = h−ν

I h is household income
I ν represents a policymaker’s preference for redistribution.
I ν =∞ corresponds to the Rawlsian criterion
I ν = 0 corresponds to utilitarianism.
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Welfare maximization with redistribution

Efficiency gain Average rebate by the quartiles of household income

[0%,25%] (25%,50%] (50%,75%] (75%,100%]

Utilitarian (ν = 0) 553.7 72.8 93.7 144.1 148.9
(68.0) (10.3) (12.9) (19.1) (18.9)

With a redistribution goal 431.2 77.0 132.3 140.2 116.5
(ν = 1) (69.2) (13.0) (17.4) (18.1) (17.6)

With a redistribution goal 366.1 105.2 115.7 109.9 119.2
(ν = 2) (69.3) (14.8) (16.5) (16.2) (20.8)

• We apply our method to a welfare function with different values of ν

• Higher ν indeed improves equity at the cost of sacrificing efficiency

• Policymakers can choose the appropriate level of ν based on this trade-off
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Conclusion
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Summary

1. Setting: A costly treatment that could generate a social welfare gain
I Field experiment: A peak-hour rebate program for energy conservation
I Cost: Implementation cost per participating household
I Benefit: A social welfare gain if a participant actually conserves energy

2. Our method can be used with RCT or quasi-experimental data to find
I Consumer type x ∈ X who should be “treated”
I Consumer type x ∈ X who should be “untreated”
I Consumer type x ∈ X who should “self-select”

3. Key results:
I Selection-driven targeting outperforms conventional targeting
I We show that the LATE framework can be use to reveal the mechanism
I Our method allows policymakers to identify whose self-selection would

be valuable and harmful to social welfare
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Thank you!

Koichiro Ito (ito@uchicago.edu)



Appendix Slides



Optimization

• Solving the EWM with the class of depth 6 decision trees is

computationally infeasible.

• Use the following Two-step Procedure (does not achieve the global
optimal):

1. Search for the best decision tree of depth 3 with the three arms (T,U,S).

2. For each leaf node in the depth 3 decision tree, search the best decision

tree of depth 3 with the three arms (T,U,S).
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Estimation and inference on welfare gain W(Ĝ )

• We want to evaluate the welfare gain W(Ĝ ) of Ĝ .

• Caution: Ŵ(Ĝ ) is an upwardly biased estimate of W(Ĝ ) (winner’s

bias).

• We make an artificial test data set for unbiased estimation and

inference of W(Ĝ ).
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Source of the bias

• The outcomes Yj (j ∈ {T ,U, S}) can be decomposed into essential
terms and noises:

Yj = E [Yj | X ]︸ ︷︷ ︸
essential term

+ εj︸︷︷︸
noise

.

• A learning algorithm inevitably responds to the noise (i.e., overfitting

to the data) ⇒ Ŵ(Ĝ ) is upwardly biased.

• One possible solution is to split the whole data to training data (to

estimate the policy) and test data (to estimate the welfare

performance) ⇒ Inefficient!

• Idea of our solution: Replace the noise in the training data with a

second independent data to make an artificial test data.
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Artificial test data

• Generate artificial test data {(Y test
i ,Dtest

i ,Zi ,Xi ) : i = 1, . . . , n} as

follows:

• {Y test
i : i = 1, . . . , n} is generated as follows: For j ∈ {T ,U,S} and

samples i ∈ Ij := {i : Zi = j},
1. Estimate E [Yj | X ] (by e.g., random forest) and calculate residuals

ε̂i = Yi − Ê [Yj,i | Xi ].

2. Randomly sample {ε̂testi : i ∈ Ij} from {ε̂i}i∈Ij with replacement.

3. Construct Y test
i = Ê [Yj,i | Xi ] + ε̂testi for each i ∈ Ij .

• {Dtest
i : i = 1, . . . , n} is generated as follows: For i ∈ IS ,

1. Estimate P(DS,i = 1 | Xi ).

2. Sample {Dtest
i : i ∈ IS} according to Dtest

i ∼ P̂(DS,i = 1 | Xi ).

• Use this test data to estimate W(Ĝ ) and do its inference.
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