The Global Impact of Environmental Regulation through Multinational Firms

Koichiro Ito¹

¹University of Chicago and NBER (ito@uchicago.edu)

A country's regulation often affects multinational firms

- Examples:
 - Environmental regulations on cars, electric appliances, etc.
 - ► Safety regulations on equipment, medications, etc.
- A country's domestic policy may affect people living in other countries
 - A country's policy affects the product design of multinational firms
 - ▶ If the product is sold worldwide, the policy impact may spillover
- However, economic analysis usually does not incorporate this possibility
 - e.g. Analyses of environmental policies usually focus on domestic benefits
 - Conventional analysis may have understated the impact of many policies

I investigate this question in the international car markets

- Automakers often sell common models in many countries
 - ► The world best selling models (Toyota Carolla, Rav4, Honda Civic, CR-V etc.) are sold in many countries
 - ▶ A country's environmental policy might affect the design of these models
 - If the product is sold worldwide, the policy impact may spillover

Related literature?

- My RAs could not find existing papers directly related to this question
- I have not yet asked ChatGPT
- Any related literature?

Policy: JPN government's subsidy for fuel-efficient vehicles

- "Eco-car" subsidy started in April, 2009
 - Consumers received a \$1,000 subsidy for a new car purchase if the model exceeds its 2015 fuel economy target
 - ► A stronger incentive for automakers to improve each model's fuel economy than the CAFE b/c the incentive was at the model level
 - Firms responded to it by improving fuel economy
- However, it was considered to be an "expensive" policy
 - ▶ The government spent \$6.3 billion for the subsidy

Hypothesis: did the policy generate international spillovers?

- What could be important factors for the potential spillover effect?
 - Firms face fixed costs of changing each model's product design
 - ► The subsidy incentive needs to be large enough to cover the fixed cost
- Conditions for home country:
 - ► The market has to be big enough for the model, otherwise it makes little sense for firms to respond to the subsidy's incentive
- Conditions for spillovered country:
 - ► Spillover impact is economically significant if the model's market share in the spillovered country is also larger

Which firms sell the most in the Japanese market?

• JPN firms dominate, European firms are second, and almost no American cars

Market share in Japan relative to a firm's worldwide sales

JPN market is important for JPN & European firms, not so for American firms

Identification strategy and data

- Identification strategy
 - Want to estimate JPN policy's impact on MPG of cars sold outside JPN
 - We use the difference-in-differences (DID) method
 - ► Time: before and after the policy introduction
 - ► Treated: models sold in home county (JPN) and spillovered country (US)
 - Control: the same firms' models sold in the US but NOT sold in JPN

Data

- Car characteristics data and sales data at the model level
- ▶ Data sources: web-scraped car characteristics, sales from Marklines
- Currently collected data for Japan, US, Germany, India
- Linking models between countries is not obvious and needs careful work

Difference-in-differences for cars sold by JPN automakers

$$In MPG_{it} = \alpha Treated_i \times Post_t + \beta Treated_i + \gamma Post_t + \delta X_{it} + \epsilon_{it}$$

- Variables:
 - $ightharpoonup MPG_{it}$ is miles per gallon for vehicle i and model year t in the US market
 - ► $Treated_i = 1$ if model i is also sold in Japan
 - $ightharpoonup Post_t = 1$ after the introduction of the fuel-efficiency subsidy in Japan
 - \triangleright X_{it} is a set of control variables (e.g., model and time fixed effects)
 - Standard errors clustered at the model level to adjust for serial correlation
- Identification assumption:
 - Parallel trend of MPG between 1) models sold in both countries and 2) models not sold in Japan

Japanese cars in the US market

- US is the top 2 country in car sales (18.5% of the world sales)
- Japanese automakers have a 36.5% market share in the US

Average In(MPG) in the US market: Unweighted

- Treatment: Japanese cars sold in the US and Japan (90 models)
- Control: Japanese cars sold in the US but not in Japan (41 models)
- Vertical line: Introduction of the fuel-efficiency subsidy in Japan

Average In(MPG) in the US market: Weighted by sales

- Treatment: Japanese cars sold in the US and Japan (90 models)
- Control: Japanese cars sold in the US but not in Japan (41 models)
- Vertical line: Introduction of the fuel-efficiency subsidy in Japan

Spillover effects for Japanese cars in the US market

 $In MPG_{it} = \alpha Treated_i \times Post_t + \beta Treated_i + \gamma Post_t + \delta X_{it} + \epsilon_{it}$

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.112 (0.042)	0.108 (0.041)	0.085 (0.025)	0.080 (0.025)
Treated	0.298 (0.062)	0.299 (0.062)		
Post	-0.007 (0.037)		0.007 (0.016)	
N Year FE Model FE	1,178 No No	1,178 Yes No	1,176 No Yes	1,176 Yes Yes

[•] Spillover effects: $8{\sim}11\%$ increase in fuel economy

American cars in the US market

- American automakers have a 45.1% market share in the US.
- American automakers have a 0.2% market share in Japan.

Spillover effects for American cars in the US market

(1)

0.040

(0.049)

-0.102 (0.062)

0.093

Insignificant effects \rightarrow could makes sense b/c of the low market share in Japan

(2)

0.040

(0.048)

-0.102

(0.062)

(3)

-0.019

(0.031)

0.093

(4)

-0.018

(0.031)

1,325 Yes Yes

	(0.033)	(0.033)		
N	1,329	1,329	1,325	
Year FE	No	Yes	No	
Model FE	No	No	Yes	

Treatment: US cars sold in the US and Japan (59 models)
Control: US cars sold in the US but not in Japan (144 models)

Treated × Post

Treated

Post

^{16 / 31}

Japanese cars in the German market

- Germany is the top 5 country in car sales (3.9% of the world sales)
- Japanese automakers have a 9.8% market share in Germany

Spillover effects for Japanese cars in the German market

 $In MPG_{it} = \alpha Treated_i \times Post_t + \beta Treated_i + \gamma Post_t + \delta X_{it} + \epsilon_{it}$

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.083 (0.035)	0.076 (0.031)	0.078 (0.024)	0.076 (0.020)
Treated	-0.263 (0.114)	-0.263 (0.115)		
Post	0.061 (0.022)		0.047 (0.014)	
N Year FE Model FE	547 No No	547 Yes No	543 No Yes	543 Yes Yes

- Treatment: Japanese cars sold in Germany and Japan (84 models)
- Control: Japanese cars sold in Germany but not in Japan (7 models)
- Spillover effects: 8% increase in fuel economy

Japanese cars in the Indian market

- India is the top 4 country in car sales (4.6% of the world sales)
- Japanese automakers have a 49.2% market share in India

Spillover effects for Japanese cars in the Indian market

 $In MPG_{it} = \alpha Treated_i \times Post_t + \beta Treated_i + \gamma Post_t + \delta X_{it} + \epsilon_{it}$

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.173 (0.135)	0.144 (0.142)	0.285 (0.056)	0.272 (0.060)
Treated	-0.016 (0.139)	-0.016 (0.143)		
Post	0.115 (0.123)		-0.006 (0.009)	
N Year FE Model FE	147 No No	147 Yes No	145 No Yes	145 Yes Yes

- Treatment: Japanese cars sold in India and Japan (29 models)
- Control: Japanese cars sold in the India but not in Japan (13 models)

Welfare implications

Welfare implications of the international spillover effects

- Full welfare components
 - Consumer surplus may change (due to access to better MPG cars)
 - Producer surplus may change (due to changes in market competition)
 - Negative externalities may change (due to less gasoline usage)
- Today, I focus on the externality, with simplifying assumptions
 - No demand response—the MPG improvement does not change demand for these models & miles driven
 - Externality cost of gasoline is \$2.1 per gallon (EPA)
 - ► Focus on the effects on JPN models only (understate the effects)

Back of envelop calculation: Avoided negative externality

- What is the avoided negative externality in the US?
 - ► The subsidy in Japan resulted in a 8-11% improvement in MPG in JPN cars also sold in the US (this is ATT)
 - ightharpoonup Using MPG and sales data for the treated models, calculate Δ gallons
- Preliminary results for the US:
 - $ightharpoonup \Delta$ gallons saved = 261 million per year in the US market
 - Δexternality reduced = \$548 million pear year in the US market (using externality cost \$2.1 per gallon)

Back of envelop calculation: Avoided negative externality

- Preliminary results for Germany:
 - $ightharpoonup \Delta$ gallons saved = 7 million per year in the German market
 - Arr Δ externality reduced = \$14.7 million pear year in the German market (using externality cost \$2.1 per gallon)
- Preliminary results for India:
 - $ightharpoonup \Delta$ gallons saved = 60.6 million per year in the Indian market
 - Δexternality reduced = \$127.3 million pear year in the Indian market (using externality cost \$2.1 per gallon)

Next steps

- 1. Include more countries?
 - ▶ Data access/quality can be challenging for some countries, but possible
- 2. Investigate more about mechanisms?
 - e.g. How does firms' production network affect the spillover
- 3. Full welfare analysis with a structural model?
 - Consumer surplus may change (due to access to better MPG cars)
 - Producer surplus may change (due to changes in market competition)
 - Negative externalities may change (due to less gasoline usage)

Appendix

Sales over time

- Electricity is a major source of GHG emissions (e.g., 25% in the US)
- Another large source is transportation, which can be electrified soon

JPN cars in Germany market (Control: US)

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.147	0.112	0.115	0.081
	(0.046)	(0.040)	(0.025)	(0.023)
Treated	0.595	0.628	-0.106	-0.080
	(0.062)	(0.056)	(0.022)	(0.020)
Post	-0.003 (0.037)		0.010 (0.017)	
N	793	793	790	790
Year FE	No	Yes	No	Yes
Model FE	No	No	Yes	Yes

- Treatment: Japanese cars sold in Germany and Japan (84 models)
- Control: Japanese cars sold in the US but not in Japan (41 models)

JPN cars in India market (Control: US)

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.382 (0.050)	0.365 (0.050)	0.319 (0.035)	0.286 (0.031)
Treated	0.481 (0.066)	0.491 (0.069)	-0.107 (0.028)	-0.042 (0.029)
Post	-0.016 (0.036)		0.010 (0.017)	
N	424	424	423	423
Year FE	No	Yes	No	Yes
Model FE	No	No	Yes	Yes

- Treatment: Japanese cars sold in India and Japan (29 models)
- Control: Japanese cars sold in the US but not in Japan (41 models)

European cars in the US market

- European automakers have a 8.5% market share in the US.
- European automakers have a 4.6% market share in Japan.

Spillover effects for European cars in the US market

 $In MPG_{it} = \alpha Treated_i \times Post_t + \beta Treated_i + \gamma Post_t + \delta X_{it} + \epsilon_{it}$

	(1)	(2)	(3)	(4)
$Treated \times Post$	0.069 (0.049)	0.072 (0.052)	0.108 (0.016)	0.095 (0.022)
Treated	-0.151 (0.075)	-0.153 (0.074)		
Post	0.055 (0.045)		0.009 (0.012)	
N Year FE Model FE	962 No No	962 Yes No	959 No Yes	959 Yes Yes

- Treatment: EU cars sold in the US and Japan (95 models)
- Control: EU cars sold in the US but not in Japan (43 models)