International Spillover Effects of Air Pollution:

Evidence from Mortality and Health Data

Seonmin (Will) Heo ¹ Koichiro Ito² Rao Kotamarthi³

¹UC Santa Barbara (sheo@ucsb.edu)

²University of Chicago and NBER (ito@uchicago.edu)

³Argonne National Laboratory (vrkotamarthi@anl.gov)

International spillover effects are becoming important

South Korea pollution: Is China the cause of 'fine dust'?

However, economic analysis rarely incorporate such effects

- Analyses of environmental policies usually focus on domestic benefits
 - e.g. Evaluations of environmental regulations in the United States
 - e.g. Evaluations of China's recent policy "War against pollution"
- We may have understated the benefits of environmental policies
 - e.g. China's environmental policy could benefit surrounding countries
 - ▶ In this case, conventional approaches may understate a policy's benefits

In this paper, we study this international spillover effect

- 1. Integrate atmospheric science modeling with econometric estimation
 - ▶ Previous studies use indirect measures of transboundary air pollution
 - ▶ We use the HYSPLIT model to obtain direct measures at hour-city level
 - Bring these data to an econometric framework
- 2. Use the universe of individual-level mortality data in South Korea
 - ▶ We observe date, location, age, cause of death etc.
 - Estimate the mortality impact of transboundary air pollution
- 3. Quantify a hidden benefit of recent air quality improvements in China

Road map of the talk

- 1. Data and Descriptive Evidence
- 2. Empirical Analysis and Results
- 3. Policy Implications

Data and Descriptive Evidence

Data 1) PM_{2.5} and weather data in China and South Korea

- Hourly PM_{2.5} at the monitor level in China and South Korea
 - ▶ January 2015 to Decmber 2019
 - Sources: Korea Environment Corporation and Berkeley Earth
- Monitor-level weather data in South Korea
 - Source: Korea Meteorological Administration

Westerlies create strong wind from China to South Korea

Winter and spring: Prevailing west wind in East Asia

The ratio of west wind in Seoul = west wind / (west + east wind)

Winter and spring: Wind speed is also higher

PM_{2.5}: Suggestive evidence of transboundary air pollution

- Summer and fall: PM_{2.5} is similar in NW and SW of South Korea
- Winter and spring: PM_{2.5} is higher in NW than SW of South Korea

Data 2) Transboundary air pollution data from HYSPLIT

- Previous studies use indirect measures
 - e.g. an interaction between source location's pollution and wind direction
- We use NOAA's HYSPLIT model to obtain a direct measure
 - 1. Obtain backward particle trajectories for each hour for each city

Examples of backward trajectories

Frequency of trajectories coming from China

• For each city, we calculate % of hours that had trajectories from China

Where did these trajectories come from?

• For each city in China, we calculate % of hours that had trajectories to Korea

Data 2) Transboundary air pollution data from HYSPLIT

- 1. Obtain backward particle trajectories for each hour for each city
 - Need to obtain 6.57 million trajectories (24 hourly trajectories/day \times 365 days/year \times 5 years \times 228 cities in South Korea)
- 2. For each trajectory, identify time and location when it hits China
 - ▶ We use 1 km height in China and check robustness with other heights
- 3. Identify PM_{2.5} at this location (in China) and time
 - ► We call this PM_{2.5} by "Transboundary PM_{2.5}"
 - ightharpoonup i.e., Transboundary PM_{2.5} is the level of PM_{2.5} at the source location

Data 3) Mortality and ER visits

- The universe of mortality data in South Korea (1997-2019)
 - Date, hour, city, and cause of death. Age and gender.
 - Source: Statistics Korea
- Emergency hospital admissions in South Korea (2013-2017)
 - City-by-day data by symptoms
 - Source: National Health Insurance Service

Road map of the talk

- 1. Data and Descriptive Evidence
- 2. Empirical Analysis and Results
- 3. Policy Implications

Empirical Analysis and Results

$$PM_{ct} = \alpha_1 Transboundary PM_{ct} + \alpha_2 X_{ct} + \theta_{ymc} + u_{ct}, \qquad (1)$$

- Variables:
 - $ightharpoonup PM_{ct}$: Hourly $PM_{2.5}$ in South Korean city c in hour t
 - ► TransboundaryPM_{ct}: Hourly transboundary PM_{2.5} from China that reached South Korean city c in hour t
 - \triangleright X_{ct} : A vector of control variables (weather etc.)
 - θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
 - ▶ We cluster standard errors at the city level

• Raw data (hourly $PM_{2.5}$) with no control, with bin size =1 unit of $PM_{2.5}$

Resisualized with fixed effects and controls used in last column of next table

13t Stage. Hallsboullda	1 y 1 1 v 12	.5 & 1 1	V12.5 III	Jouth	Torea
Dependent variable: Hourly PM _{2.5} in South Korean cities					
	(1)	(2)	(3)	(4)	(5)
Hourly Transboundary PM _{2.5}	0.170 (0.003)	0.129 (0.002)	0.129 (0.002)	0.129 (0.002)	0.122 (0.002)
Constant	22.776 (0.221)				
Observations	9160118	9107025	9107025	9107025	9107025
KP F-stat	3885	5730	5819	5774	5812
Year-Month-City FE	No	No	Yes	Yes	Yes
Year-Month FE	No	Yes	No	No	No
Month-City FE	No	Yes	No	No	No
Month-Province FE	No	No	No	No	No
City FE	No	No	No	No	No
Day of week-City FE	No	Yes	Yes	Yes	Yes
Rainfall quartile-City FE	No	Yes	No	Yes	No
Temperature quartile-City FE	No	Yes	No	Yes	No

Rainfall decile-City FE Nο Nο Nο Nο Yes Temperature decile-City FE Nο Nο Nο Nο Yes Rainfall quartile FE No No Yes No No Temperature quartile FE No No Yes No No

¹ unit increase in transboundary $PM_{2.5} \rightarrow 0.12$ increase in $PM_{2.5}$ in Korea

Impacts on Mortality

Reduced-form: Transboundary PM_{2.5} & Mortality

$$Mortality_{ct} = \sum_{j=0}^{J} \beta_j Transboundary PM_{c,t-j} + \delta X_{ct} + \theta_{ymc} + u_{ct}, \qquad (2)$$

- Variables:
 - Mortality_{ct}: Hourly mortality in South Korean city c in hour t
 - ► Transboundary $PM_{c,t-j}$: Hourly transboundary $PM_{2.5}$ from China that reached South Korean city c in hour t-j
 - \triangleright X_{ct} : A vector of control variables (weather etc.)
 - \bullet θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
 - We cluster standard errors at the city level

Reduced-form: Transboundary PM_{2.5} & Mortality

Dependent variable: Mortality at hour-city level (death per billion people)

	Respiratory/ cardiovascular	Elderly	Infant	Overall
Hourly Transboundary PM _{2.5} (past 0-70 days)	1.66	19.00	6.67	3.56
	(0.17)	(2.17)	(3.33)	(0.34)
Observations Mean of dependent variable Percent change relative to the mean	9555368	9555368	9555368	9555368
	148	3259	314	618
	1.12	0.58	2.12	0.58

- 1 $\mu g/m^3$ increase in transboundary PM_{2.5} from China in the past 70 days \rightarrow an increase in hourly mortality in South Korea by 3.56 (per billion people)
- This is a 0.6% increase in mortality relative to mean hourly mortality

Reduced-form: Weekly lagged effects

(past 49-56 day)

(past 56-63 day)

(past 63-70 day)

Observations

Hourly Transboundary PM 2 5

Hourly Transboundary PM 2.5

Mean of dependent variable

	Respiratory/			
	cardiovascular	Elderly	Infant	Overall
Hourly Transboundary PM _{2.5} (past 0-7 day)	0.14	1.35	0.90	0.28
	(0.04)	(0.48)	(0.58)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 7-14 day)	0.21	1.93	0.37	0.34
	(0.03)	(0.47)	(0.64)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 14-21 day)	0.25	3.16	2.02	0.55
	(0.04)	(0.45)	(0.64)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 21-28 day)	0.25	3.59	-0.36	0.60
	(0.03)	(0.46)	(0.59)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 28-35 day)	0.23	3.61	1.18	0.62
	(0.04)	(0.49)	(0.70)	(0.07)
Hourly Transboundary PM _{2.5} (past 35-42 day)	0.27	3.81	0.10	0.66
	(0.04)	(0.51)	(0.69)	(0.08)

Hourly Transboundary PM _{2.5} (past 7-14 day)	0.21	1.93	0.37	0.34
	(0.03)	(0.47)	(0.64)	(0.07)
Hourly Transboundary PM _{2.5} (past 14-21 day)	0.25	3.16	2.02	0.55
	(0.04)	(0.45)	(0.64)	(0.07)
Hourly Transboundary PM _{2.5} (past 21-28 day)	0.25	3.59	-0.36	0.60
	(0.03)	(0.46)	(0.59)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 28-35 day)	0.23	3.61	1.18	0.62
	(0.04)	(0.49)	(0.70)	(0.07)
Hourly Transboundary PM _{2.5} (past 35-42 day)	0.27	3.81	0.10	0.66
	(0.04)	(0.51)	(0.69)	(0.08)
Hourly Transboundary PM _{2.5} (past 42-49 day)	0.14	2.41	1.21	0.46
	(0.03)	(0.44)	(0.75)	(0.07)
Hourly Transboundary PM _{2.5}	0.22	3.50	0.87	0.61

(0.03)

0.12

(0.03)

0.09

(0.03)

9555318

148

(0.45)

1 74

(0.40)

-0.09

(0.42)

9555318

3259

(0.70)

0.42

(0.57)

0.67

(0.64)

9555318

314

(0.07)

0.29

(0.06)

0.07

(0.06)

9555318

618 27 / 46

Reduced-form: Weekly lagged effects

2nd stage: PM_{2.5} in South Korea & Mortality

$$Mortality_{ct} = \sum_{i=0}^{J} \beta_j PM_{c,t-j} + \delta X_{ct} + \theta_{ymc} + u_{ct},$$
 (3)

Variables:

- Mortality_{ct}: Hourly mortality in South Korean city c in hour t
- ▶ $PM_{c,t-j}$: Hourly $PM_{2.5}$ in South Korean city c in hour t-j
- ► Instrument = TransboundaryPM $_{c,t-i}$
- $ightharpoonup X_{ct}$: A vector of control variables (weather etc.)
- \bullet θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
- We cluster standard errors at the city level

2nd stage: PM_{2.5} in South Korea & Mortality

Dependent variable: Mortality at hour-city level (death per billion people)

	Respiratory/ cardiovascular	Elderly	Infant	Overall
Hourly PM _{2.5} (past 0-70 days)	4.24	48.60	17.44	9.09
	(0.47)	(5.72)	(8.63)	(0.94)
Observations Mean of dependent variable Percent change relative to the mean KP F-stat	9528960	9528960	9528960	9528960
	148	3258	314	618
	2.86	1.49	5.55	1.47
	1816	1816	1816	1816

- 1 $\mu g/m^3$ increase in local PM_{2.5} in South Korea in the past 70 days \to an increase in hourly mortality in South Korea by 9.09 per billion people
- This is a 1.47% increase in mortality relative to mean hourly mortality

Impacts on Emergency Room Visits

Reduced-form: Transboundary PM_{2.5} & ER visits

Dependent variable: Counts of ER visits at day-city level (visit per billion people)

-			,
	Asthma	Rhinitis	Atopic
Daily Trans. PM _{2.5}	28.0	437.4	-3.5
(past 0-60 days)	(9.7)	(51.4)	(1.5)
Observations	235388	235388	235388
Mean of dependent variable	9228.3	14053.4	363.5
Percent change relative to the mean	0.30	3.11	-0.98

We find increases for Asthma and Rhinitis but not for Atopic

Does the "pollution alert" change the damage function?

Dependent variable: Mortality at hour-city level (death per billion people)

	Respiratory/ cardiovascular	Elderly	Infant	Overall
Hourly Transboundary PM _{2.5} (past 0-70day)	2.04	25.46	5.13	4.47
	(0.19)	(2.48)	(3.62)	(0.40)
Hourly Alert	-73.04	650.81	850.75	176.44
(past 0-70day)	(59.64)	(758.45)	(1080.57)	(129.36)
Trans. PM $_{2.5}$ (past 0-70day) \times Alert (past 0-70day)	-3.41	-124.71	-5.18	-20.50
	(2.77)	(34.71)	(45.80)	(5.76)
Observations	9555368	9555368	9555368	9555368
Mean of dependent variable	148	3259	314	618

• The negative coefficient on the interaction term provides suggestive evidence that the marginal damage of pollution is reduced by the alert

Road map of the talk

- 1. Data and Descriptive Evidence
- 2. Empirical Analysis and Results
- 3. Policy Implications

Policy Implications (work in progress)

Policy implications

- China had a substantial improvement in air quality from 2015 to 2020
 - ▶ There was a decrease in average $PM_{2.5}$ by $10 \mu/m^3$
 - This is partly due to aggressive environmental policy "war on pollution"
- What is the international spillover benefit implied by our estimates?
 - One approach is to monetize our estimates by using the VSL
 - Estimate age-specific mortality impacts of transboundary pollution
 - ▶ Then use age-specific VSL estimates to obtain the values of life-years lost
 - \blacktriangleright Our current estimate implies that the 10 μ/m^3 reduction in PM_{2.5} in China in 2015-20 provided an international spillover benefit of \$8.05 billion per year for South Korea

Is this overestimated if China did strategic reductions?

- Hypothesis: China may have reduced pollution only for their citizens
 - ► China may have a weaker incentive to reduce transboundary pollution
- Use the HYSPLIT to calculate "in-China ratio"
 - ► For each city & power plant, we obtain forward trajectories in each hour
 - Calculate how often this trajectory falls within China ("in-China ratio")
 - ► Test if the pollution reductions were correlated with "in-China ratio"

We find larger reductions where in-China ratio is higher

We find larger reductions where in-China ratio is higher

Dependent variable: PM _{2.5} in China	at the city-year-month level
--	------------------------------

	(1)	(2)
Annual trend	-4.52	
	(0.12)	
Annual trend * in-China ratio	-8.15	-8.13
	(0.96)	(0.96)
Observations	235388	235388
Mean of dependent variable	47.30	47.30
City FE	Yes	Yes
Time FE	No	Yes

• Standard errors are clustered at the city level

What does this strategic reduction imply?

- 1. Our previous calculation was overestimated
 - We used China's average reductions in PM_{2.5} (10 μ/m^3)
 - ▶ China's reductions that were relevant to South Korea was lower
 - We are updating our benefit calculation
- 2. We could also consider a counterfactual scenario
 - ▶ What if China was more cooperative with South Korea?
 - This could be done by a negotiation/agreement
 - A typical challenge: economic benefit of such cooperation is unmeasured
 - ▶ We could use our results to estimate the benefit of such cooperation

Conclusion

In this paper, we study this international spillover effect

- 1. Integrate atmospheric science modeling with econometric estimation
 - Previous studies use indirect measures of transboundary air pollution
 - ▶ We use the HYSPLIT model to obtain direct measures at hour-city level
 - Bring these data to an econometric framework
- 2. Use the universe of individual-level mortality data in South Korea
 - ▶ We observe date, location, age, cause of death etc.
 - Estimate the mortality impact of transboundary air pollution
- 3. Quantify a hidden benefit of recent air quality improvements in China

Appendix

How long does it take for particles to reach South Korea?

The median is 38 hours

Table: Summary Statistics

	Mean	Standard deviation	Min	Max
$PM_{2.5}\ (\mu/)$ in Korean cities	24.99	18.06	0	843
Transboundary PM $_{2.5}$ ($\mu/$) from China to Korean cities	14.19	27.53	0	695
Transboundary trajectory indicator variable (1 or 0)	0.39	0.49	0	1
Mortality in Korean cities (hourly deaths per billion)				
Overall	894	3,800	0	200,501
Respiratory/Cardiovascular	231	1,954	0	117,689
Infant (age < 1)	327	27,702	0	14,084,507
Elderly (age ≥ 65)	3,576	14,197	0	928,505
City-level population (in thousands)				
Overall	232	240	10	1,700
Elderly (age \geq 65)	32.16	25.27	2.10	181.83
Infant (age < 1)	1.68	1.91	0.03	12.92
Hourly Temperature ($^{\circ}$ C)	13.01	10.43	-25.27	40.50
Hourly Precipitation (mm)	0.13	1.00	0	109.50