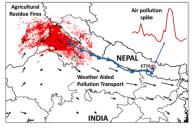
International Spillover Effects of Air Pollution:

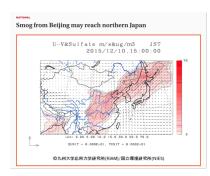
Evidence from Mortality and Health Data

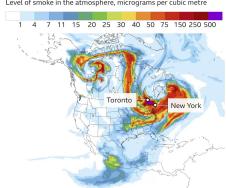
Seonmin (Will) Heo ¹ Koichiro Ito² Rao Kotamarthi³

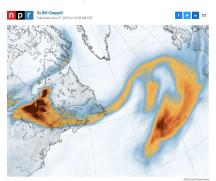

¹UC Santa Barbara (sheo@ucsb.edu)

²University of Chicago and NBER (ito@uchicago.edu)

³Argonne National Laboratory (vrkotamarthi@anl.gov)


International spillover effects are becoming important


South Korea pollution: Is China the cause of 'fine dust'?


Including recent Canadian wildfires affecting US & Europe

Smoke from Canadian wildfires is blowing across US

Level of smoke in the atmosphere, micrograms per cubic metre

Smoke from Canada's wildfires darkens Europe's skies

Including recent Canadian wildfires affecting US & Europe

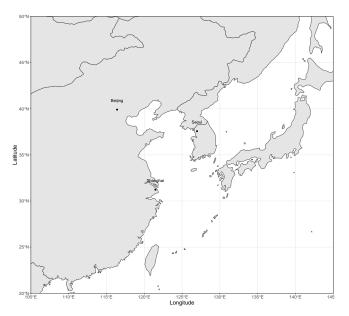
However, economic analysis rarely incorporate this effect

- Analyses of environmental policies usually focus on domestic benefits
 - e.g. Evaluations of environmental regulations in the United States
 - e.g. Evaluations of China's recent policy "War against pollution"
- We may have understated the benefits of environmental policies
 - e.g. China's environmental policy could benefit surrounding countries
 - In this case, conventional approaches may understate a policy's benefits
- Failure of international cooperation makes air pollution problems worse
 - Especially if countries make strategic decisions on where to emit pollution

In this paper, we study this international spillover effect

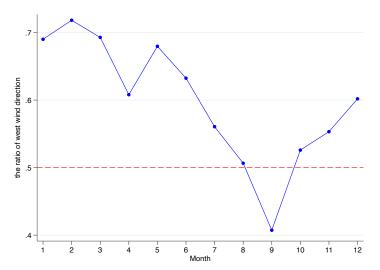
- 1. Integrate atmospheric science modeling with econometric estimation
 - ▶ Previous studies use indirect measures of transboundary air pollution
 - ▶ We use the HYSPLIT model to obtain direct measures at hour-city level
 - Bring these data to an econometric framework
- 2. Use the universe of individual-level mortality data in South Korea
 - We observe date, location, age, cause of death etc.
 - Estimate the mortality impact of transboundary air pollution
- 3. Quantify a hidden benefit of recent air quality improvements in China
- 4. Examine China's strategic pollution reductions and Coasian bargaining

Road map of the talk

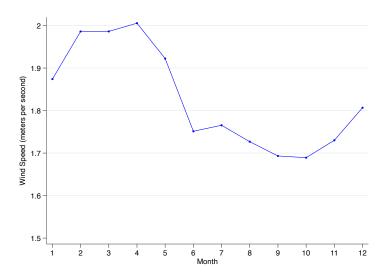

- 1. Introduction
- 2. Data and Descriptive Evidence
- 3. Empirical Analysis and Results
- 4. Strategic Reductions in Air Pollution and Policy Implications
- 5. Conclusion

Data and Descriptive Evidence

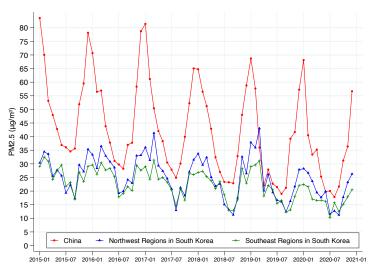
Data 1) PM_{2.5} and weather data in China and South Korea


- Hourly PM_{2.5} at the monitor level in China and South Korea
 - ▶ January 2015 to Decmber 2019
 - Sources: Korea Environment Corporation and Berkeley Earth
- Monitor-level weather data in South Korea
 - Source: Korea Meteorological Administration

Westerlies create strong wind from China to South Korea

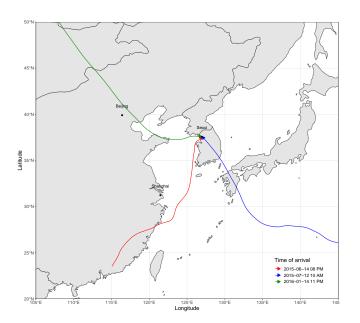


Winter and spring: Prevailing west wind in East Asia


The ratio of west wind in Seoul = west wind / (west + east wind)

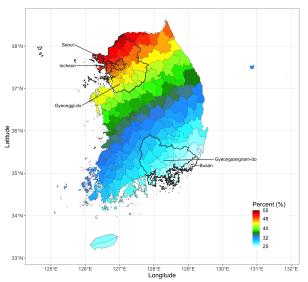
Winter and spring: Wind speed is also higher

PM_{2.5}: Suggestive evidence of transboundary air pollution

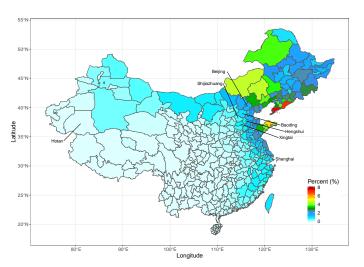


- Summer and fall: PM_{2.5} is similar in NW and SW of South Korea
- Winter and spring: PM_{2.5} is higher in NW than SW of South Korea

Data 2) Transboundary air pollution data from HYSPLIT


- Previous studies use indirect measures
 - e.g. an interaction between source location's pollution and wind direction
- We use NOAA's HYSPLIT model to obtain a direct measure
 - 1. Obtain backward particle trajectories for each hour for each city

Examples of backward trajectories


Frequency of trajectories coming from China

• For each city, we calculate % of hours that had trajectories from China

Where did these trajectories come from?

• For each city in China, we calculate % of hours that had trajectories to Korea

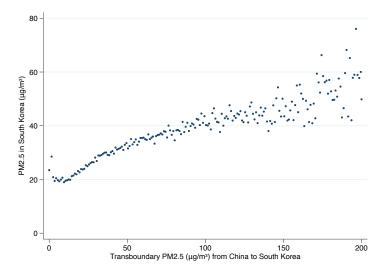
Data 2) Transboundary air pollution data from HYSPLIT

- 1. Obtain backward particle trajectories for each hour for each city
 - Need to obtain 6.57 million trajectories (24 hourly trajectories/day \times 365 days/year \times 5 years \times 228 cities in South Korea)
- 2. For each trajectory, identify time and location when it hits China
 - ▶ We use 1 km height in China and check robustness with other heights
- 3. Identify $PM_{2.5}$ at this location (in China) and time
 - ► We call this PM_{2.5} by "Transboundary PM_{2.5}"
 - ightharpoonup i.e., Transboundary PM_{2.5} is the level of PM_{2.5} at the source location

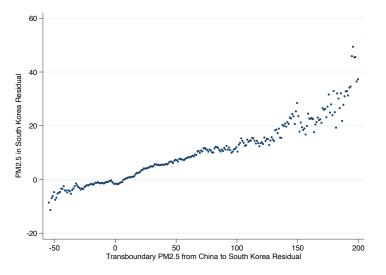
Data 3) Mortality and ER visits

- The universe of mortality data in South Korea (1997-2019)
 - Date, hour, city, and cause of death. Age and gender.
 - Source: Statistics Korea
- Emergency hospital admissions in South Korea (2013-2017)
 - City-by-day data by symptoms
 - Source: National Health Insurance Service

Road map of the talk


- 1. Introduction
- 2. Data and Descriptive Evidence
- 3. Empirical Analysis and Results
- 4. Strategic Reductions in Air Pollution and Policy Implications
- 5. Conclusion

Empirical Analysis and Results


$$\mathsf{PM}_{\mathit{ct}} = \alpha_1 \mathsf{TransboundaryPM}_{\mathit{ct}} + \alpha_2 X_{\mathit{ct}} + \theta_{\mathit{ymc}} + u_{\mathit{ct}}, \tag{1}$$

- Variables:
 - $ightharpoonup PM_{ct}$: Hourly $PM_{2.5}$ in South Korean city c in hour t
 - ► TransboundaryPM_{ct}: Hourly transboundary PM_{2.5} from China that reached South Korean city c in hour t
 - \triangleright X_{ct} : A vector of control variables (weather etc.)
 - θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
 - We cluster standard errors at the city level

• Raw data (hourly $PM_{2.5}$) with no control, with bin size =1 unit of $PM_{2.5}$

Resisualized with fixed effects and controls used in last column of next table

Dependent variable: Hourly PM _{2.5} in South Korean cities					
	(1)	(2)	(3)	(4)	(5)
Hourly Transboundary PM _{2.5}	0.170 (0.003)	0.129 (0.002)	0.129 (0.002)	0.129 (0.002)	0.122 (0.002)
Constant	22.776 (0.221)				
Observations	9160118	9107025	9107025	9107025	9107025
KP F-stat	3885	5730	5819	5774	5812
Year-Month-City FE	No	No	Yes	Yes	Yes
Year-Month FE	No	Yes	No	No	No
Month-City FE	No	Yes	No	No	No
Day of week-City FE	No	Yes	Yes	Yes	Yes
Rainfall quartile-City FE	No	Yes	No	Yes	No
Temperature quartile-City FE	No	Yes	No	Yes	No
Rainfall decile-City FE	No	No	No	No	Yes
Temperature decile-City FE	No	No	No	No	Yes
Rainfall quartile FE	No	No	Yes	No	No
Temperature quartile FE	No	No	Yes	No	No

^{• 1} unit increase in transboundary $\text{PM}_{2.5} \rightarrow 0.12$ increase in $\text{PM}_{2.5}$ in Korea

Impacts on Mortality

Reduced-form: Transboundary PM_{2.5} & Mortality

$$Mortality_{ct} = \sum_{j=0}^{J} \beta_j Transboundary PM_{c,t-j} + \delta X_{ct} + \theta_{ymc} + u_{ct}, \qquad (2)$$

- Variables:
 - Mortality_{ct}: Hourly mortality in South Korean city c in hour t
 - ► Transboundary $PM_{c,t-j}$: Hourly transboundary $PM_{2.5}$ from China that reached South Korean city c in hour t-j
 - \triangleright X_{ct} : A vector of control variables (weather etc.)
 - θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
 - We cluster standard errors at the city level

Reduced-form: Transboundary PM_{2.5} & Mortality

Dependent variable: Mortality at hour-city level (death per billion people)

	Respiratory/ cardiovascular	Elderly	Infant	Overall
Transboundary PM _{2.5} (past 0-70 days)	1.66	19.00	6.68	3.56
	(0.17)	(2.17)	(3.33)	(0.34)
Observations Mean of dependent variable Marginal effect as % increase in mortality Marginal effect on annual mortality/million	9555368	9555368	9555368	9555368
	148	3259	314	618
	1.1%	0.6%	2.1%	0.6%
	14.5	166.5	58.5	31.2

- 1 $\mu g/m^3$ increase in transboundary PM_{2.5} from China in the past 70 days \rightarrow an increase in hourly mortality in South Korea by 3.56 (per billion people)
- This is a 0.6% increase in mortality relative to mean hourly mortality
- This is also a 31.2 increase in mortality per million people

Reduced-form: Weekly lagged effects

Hourly Transboundary PM 2 5

Hourly Transboundary PM 2.5

Mean of dependent variable

(past 35-42 day)

(past 42-49 day)

(past 49-56 day)

(past 56-63 day)

(past 63-70 day)

Observations

	Respiratory/ cardiovascular	Elderly	Infant	Overall
Hourly Transboundary PM _{2.5} (past 0-7 day)	0.14	1.35	0.90	0.28
	(0.04)	(0.48)	(0.58)	(0.07)
Hourly Transboundary PM $_{2.5}$ (past 7-14 day)	0.21	1.93	0.37	0.34
	(0.03)	(0.47)	(0.64)	(0.07)
Hourly Transboundary PM _{2.5} (past 14-21 day)	0.25	3.16	2.02	0.55
	(0.04)	(0.45)	(0.64)	(0.07)
Hourly Transboundary PM _{2.5} (past 21-28 day)	0.25	3.59	-0.36	0.60
	(0.03)	(0.46)	(0.59)	(0.07)
Hourly Transboundary PM _{2.5} (past 28-35 day)	0.23	3.61	1.18	0.62
	(0.04)	(0.49)	(0.70)	(0.07)

0.27

(0.04)

0.14

(0.03)

0.22

(0.03)

0.12

(0.03)

0.09

(0.03)

9555318

148

3.81

(0.51)

2.41

(0.44)

3.50

(0.45)

1 74

(0.40)

-0.09

(0.42)

9555318

3259

0.10

(0.69)

1.21

(0.75)

0.87

(0.70)

0.42

(0.57)

0.67

(0.64)

9555318

314

0.66

(0.08)

0.46

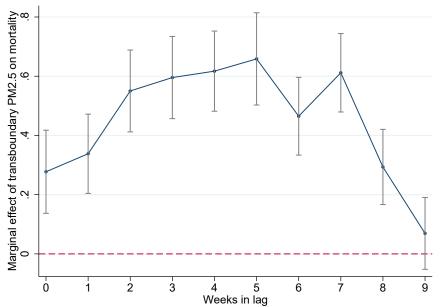
(0.07)

0.61

(0.07)

0.29

(0.06)


0.07

(0.06)

9555318

618 29 / 47

Reduced-form: Weekly lagged effects

By Age Group: Transboundary PM_{2.5} & Mortality

Dependent variable: Mortality at hour-city level (death per billion people)

	Infant	1-9	10-19	20-29	30-39	40-49
Transboundary PM _{2.5} (70 days)	6.68	0.18	-0.14	0.04	0.94	0.61
	(3.33)	(0.17)	(0.19)	(0.26)	(0.32)	(0.45)
Mean of dependent variable	314	12	18	42	79	169
Effect as % increase in mortality	2.1%	1.5%	-0.8%	0.1%	1.2%	0.4%
Effect on annual mortality/million	58.6	1.6	-1.3	0.3	8.2	5.3
	50-59	60-69	70-79	80-89	90-99	100-109
Transboundary PM _{2.5} (70 days)	2.70	4.60	13.85	39.63	110.42	185.48
	(0.73)	(1.23)	(2.64)	(7.78)	(31.68)	(173.36)
Mean of dependent variable	364	746	2313	7324	19368	16318
Effect as % increase in mortality	0.7%	0.6%	0.6%	0.5%	0.6%	1.1%
Effect on annual mortality/million	23.6	40.3	121.3	347.1	967.3	1624.8

• We find larger impacts on infants, children, and elderly

2nd stage: PM_{2.5} in South Korea & Mortality

$$Mortality_{ct} = \sum_{i=0}^{J} \beta_j PM_{c,t-j} + \delta X_{ct} + \theta_{ymc} + u_{ct},$$
 (3)

Variables:

- Mortality_{ct}: Hourly mortality in South Korean city c in hour t
- $ightharpoonup PM_{c,t-j}$: Hourly PM_{2.5} in South Korean city c in hour t-j
- ► Instrument = TransboundaryPM $_{c,t-i}$
- $ightharpoonup X_{ct}$: A vector of control variables (weather etc.)
- θ_{vmc} : Fixed effects (e.g., year-by-month-by-city FE)
- We cluster standard errors at the city level

2nd stage: PM_{2.5} in South Korea & Mortality

Dependent variable: Mortality at hour-city level (death per billion people)

	Respiratory/ cardiovascular	Elderly	Infant	Overall
PM _{2.5} (past 0-70 days)	4.24	48.60	17.44	9.09
	(0.47)	(5.72)	(8.63)	(0.94)
Observations Mean of dependent variable Marginal effect as % increase in mortality Marginal effect on annual mortality/million	9528960	9528960	9528960	9528960
	148	3258	314	618
	2.9%	1.5%	5.5%	1.5%
	37.2	425.8	152.8	79.7

- 1 $\mu g/m^3$ increase in local PM_{2.5} in South Korea in the past 70 days \to an increase in hourly mortality in South Korea by 9.09 per billion people
- This is a 1.47% increase in mortality relative to mean hourly mortality
- This is also a 79.7 increase in mortality per million people

Impacts on Emergency Room Visits

Reduced-form: Transboundary PM_{2.5} & ER visits

Dependent variable: Counts of ER visits at day-city level (visit per billion people)

Asthma	Rhinitis	Atopic
50.0 (10.2)	482.6 (54.3)	-2.8 (1.6)
235388	235388	235388
9228.3	14053.4	363.5
0.5%	3.4%	-0.8%
18.3	176.1	-1.0
	50.0 (10.2) 235388 9228.3 0.5%	50.0 482.6 (10.2) (54.3) 235388 235388 9228.3 14053.4 0.5% 3.4%

• We find increases for Asthma and Rhinitis but not for Atopic

Road map of the talk


- 1. Introduction
- 2. Data and Descriptive Evidence
- 3. Empirical Analysis and Results
- 4. Strategic Reductions in Air Pollution and Policy Implications
- 5. Conclusion

Strategic Reductions in Air Pollution and Policy Implications

Did China strategically choose where to reduce pollution?

- Hypothesis: China may prioritize pollution reductions for their citizens
 - ▶ Incentive is weaker to reduce transboundary pollution
 - ► Evidence was found in the water pollution litreature (Sigman, 2002; Lipscomb and Mobarak, 2016; Wang and Wang, 2021)
- Use the HYSPLIT to calculate "in-China ratio" of pollution trajectories
 - For each city & power plant, we obtain forward trajectories in each hour
 - Calculate how often this trajectory falls within China ("in-China ratio")
 - ► Test if the pollution reductions were correlated with "in-China ratio"

We find larger reductions where in-China ratio is higher

- Reductions in $PM_{2.5}$ ($\mu g/m^3$) from 2015 to 2019
 - Cities with quartile 1 of in-China ratio: 9.29 μg/m³
 - Cities with quartile 4 of in-China ratio: 18.30 μg/m³
 - ightharpoonup Δ Transboundary PM_{2.5} for South Korea: 9.63, similar to quartile 1

We find larger reductions where in-China ratio is higher

Yes

No

Dependent variable: Daily PM _{2.5} in China at the city-level					
	(1)	(2)	(3)	(4)	
Annual trend	-4.29 (0.12)		-2.52 (0.16)		
Annual trend $ imes$ in-China ratio	-8.70 (0.98)	-8.69 (0.98)			
Annual trend \times Quartile 2 of in-China ratio			-1.71 (0.21)	-1.71 (0.21)	
Annual trend \times Quartile 3 of in-China ratio			-1.70 (0.28)	-1.71 (0.28)	
Annual trend \times Quartile 4 of in-China ratio			-3.52 (0.36)	-3.51 (0.36)	
N Mean of dependent variable City FE	1328053 47.83 Yes	1328026 47.83 Yes	1328053 47.83 Yes	1328026 47.83 Yes	

No

Time FE

Yes

Standard errors are clustered at the city level

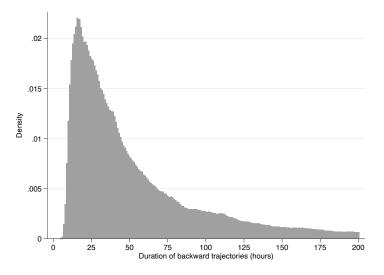
What does this strategic reduction imply?

- 1. International spillover effects are affected by the strategic reduction
 - ▶ South Korea benefited from the spillover but potentially less
- 2. We could also consider a counterfactual scenario
 - ▶ What if China was more cooperative with South Korea?
 - ► This could be done by a negotiation/agreement
 - ► Coase (1960) states that one of the challenging issues of the Coasian bargaining in practice is measuring the bargaining benefit
 - We can use our results to estimate the benefit of such cooperation

International spillover benefits from pollution reductions

- We age-specific mortality impacts of transboundary pollution and VSLs
 - Quantify benefits (\$ billion/year) for three scenarios
 - \triangleright Actual: observed reductions in transboundary PM_{2.5} (9.63 µg/m³)
 - ► Counterfactual 1: what if it was at the China's average reduction (14.07)
 - ▶ Counterfactual 2: what if it was same as the quartile 4 of in-China ratio

	Overall	Infant < 1	Youth 1 — 19	Adult 20 – 64	Elderly ≥ 65
Actual: $\Delta \text{Transboundary PM}_{2.5} \text{ by } 9.63 \mu\text{g/m}^3$	2.62	0.12	0.04	1.50	0.97
Counterfactual Scenario 1: $\Delta Transboundary~PM_{2.5}~by~14.07~\mu g/m^3$	3.83	0.18	0.05	2.19	1.41
Counterfactual Scenario 2: ΔT ransboundary PM $_{2.5}$ by 18.3 $\mu g/m^3$	4.98	0.23	0.07	2.85	1.83


Conclusion

In this paper, we study this international spillover effect

- 1. Integrate atmospheric science modeling with econometric estimation
 - ▶ Previous studies use indirect measures of transboundary air pollution
 - ▶ We use the HYSPLIT model to obtain direct measures at hour-city level
 - Bring these data to an econometric framework
- 2. Use the universe of individual-level mortality data in South Korea
 - ▶ We observe date, location, age, cause of death etc.
 - Estimate the mortality impact of transboundary air pollution
- 3. Quantify a hidden benefit of recent air quality improvements in China
- 4. Examine China's strategic pollution reductions and Coasian bargaining

Appendix

How long does it take for particles to reach South Korea?

The median is 38 hours

Table: Summary Statistics

		Standard		
	Mean	deviation	Min	Max
${\sf PM}_{2.5}~(\mu{\sf g/m}^3)$ in Korean cities	24.99	18.06	0	843
Transboundary ${\sf PM}_{2.5}~(\mu{\sf g/m}^3)$ from China to Korean cities	14.19	27.53	0	695
Transboundary trajectory indicator variable (1 or 0)	0.39	0.49	0	1
Mortality in Korean cities (hourly deaths per billion)				
Overall	894	3,800	0	200,501
Respiratory/Cardiovascular	231	1,954	0	117,689
Infant (age < 1)	327	27,702	0	14,084,507
Elderly (age \geq 65)	3,576	14,197	0	928,505
City-level population (in thousands)				
Overall	232	240	10	1,700
Elderly (age \geq 65)	32.16	25.27	2.10	181.83
Infant (age < 1)	1.68	1.91	0.03	12.92
Hourly Temperature (°C)	13.01	10.43	-25.27	40.50
Hourly Precipitation (mm)	0.13	1.00	0	109.50