Dynamic Targeting:

Experimental Evidence from Energy Rebate Programs

Takanori Ida ¹ Takunori Ishihara ² Koichiro Ito ³ Daido Kido ⁴ Toru Kitagawa ⁵ Shosei Sakaguchi ⁶ Shusaku Sasaki ⁷

 1 Kyoto University 2 Kyoto University of Advanced Science 3 University of Chicago 4 Otaru University of Commerce 5 Brown University 6 University of Tokyo 7 Osaka University

June 26, 2024

Targeting has become a central interest in policy design

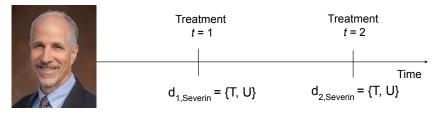
- Many policies are costly. Budgets are limited.
- How to maximize a policy's impact given a limited budget?
- Policymakers could target individuals who generate large welfare gains

Examples:

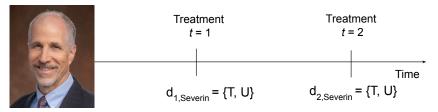
- Job training program (Kitagawa and Tetenov, 2018)
- ► SNAP (Finkelstein and Notowidigdo, 2019)
- Disability program (Deshpande and Li, 2019)
- Transfer program in development (Alatas, Purnamasari, Wai-Poi, Banerjee, Olken, Hanna, 2016)
- Energy efficiency (Burlig, Knittel, Rapson, Reguant, and Wolfram, 2020)
- Behavioral nudge (Knittel and Stolper, 2019)
- Electricity pricing (Ito, Ida, and Tanaka, 2023)
- Selection-driven targeting (Ida, Ishihara, Ito, Kido, Kitagawa, Sakagushi, Sasaki, 2023)

The literature has been focusing on "static" targeting

- However, many economic policies involve dynamics
 - Individuals often receive policy interventions repeatedly
 - Job training programs (Lechner, 2009; Rodríguez et al., 2022)
 - Unemployment insurance programs (Meyer, 1995; Kolsrud et al., 2018)
 - Healthcare programs (Luckett et al., 2019)
 - Educational interventions (Ding and Lehrer, 2010).
- How should we think about dynamic targeting?
- Consider two-period interventions with a binary treatment
 - $ightharpoonup d_t = (\mathsf{T},\mathsf{U})$ is treatment assignment at time t=1,2
 - ▶ How can we think about dynamically-optimal targeting for t = 1, 2?

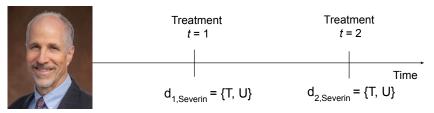


An example question: "Should Severin get treated at t=1?"



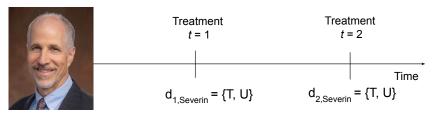
An example question: "Should Severin get treated at t = 1?"

1. Yes if welfare gain from his treatment at t = 1 is large (static reason)



An example question: "Should Severin get treated at t = 1?"

- 1. Yes if welfare gain from his treatment at t = 1 is large (static reason)
- 2. Yes if he has a learning effect
 - lacktriangle Experiencing treatment at t=1 enhances treatment response at t=2



An example question: "Should Severin get treated at t = 1?"

- 1. Yes if welfare gain from his treatment at t = 1 is large (static reason)
- 2. Yes if he has a learning effect
 - lacktriangle Experiencing treatment at t=1 enhances treatment response at t=2
- 3. Yes if he has a screening effect
 - How he responds to treatment at t=1 helps us to identify his optimal assignment at t=2

We theoretically and empirically study dynamic targeting

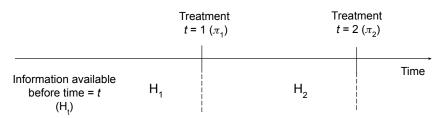
- 1. Setting: A costly treatment that could generate a social welfare gain
 - Field experiment: A peak-hour rebate program for energy conservation
 - ▶ Benefit: A reduction in DWL if a participant actually conserves energy
 - Cost: Implementation cost per participating household
 - ► Goal: Find dynamically-optimal targeting for a multi-period intervention
- 2. Use an RCT & the Empirical Welfare Maximization (EWM) to identify
 - Who should be treated & when they should be treated
- 3. Test hypotheses for several possible mechanisms
 - Learning (or fatigue) effects
 - Habit formation effects
 - Screening effects

Road map of the talk

- 1. Introduction
- 2. Conceptual Framework
- 3. Estimation Method
- 4. Field Experiment and Data
- 5. Welfare Gains from Dynamic Targeting
- 6. Mechanism Behind the Dynamic Targeting
- 7. Conclusion

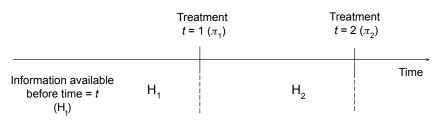
Conceptual Framework

Setup



- Consider a two-period model (can be extended to more periods)
 - ▶ Treatment is binary: $d_t = \{T, U\}$ in t = 1, 2
 - Potential outcome of welfare in time 1: $Y_1(d_1)$
 - ▶ Potential outcome of welfare in time 2: $Y_2(d_1, d_2)$

Setup



- Consider a two-period model (can be extended to more periods)
 - ▶ Treatment is binary: $d_t = \{T, U\}$ in t = 1, 2
 - ▶ Potential outcome of welfare in time 1: $Y_1(d_1)$
 - ▶ Potential outcome of welfare in time 2: $Y_2(d_1, d_2)$
- Planner considers targeting policy π based on observable data
 - ▶ Information available before time t: $H_t ∈ \mathcal{H}_t$
 - ▶ Targeting policy $\pi_t : \mathcal{H}_t \to \{T, U\}$

What information is available for the planner?

Treatment $t = 1 (\pi_1)$		Treatment $t = 2 (\pi_2)$	
H ₁ = S ₁	$H_2 = (S_1, d_1)$, S ₂ (d ₁))	Time
	t = '	$t = 1 (\pi_1)$	$t = 1 (\pi_1) \qquad \qquad t = 2 ($

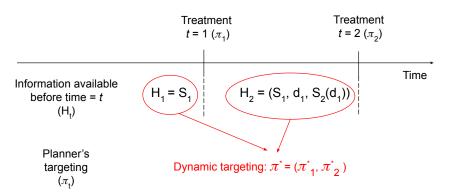
- Information available before t=1
 - \triangleright S_1 : data from the pre-period (e.g., demographics, past energy use)

What information is available for the planner?

	Treatment $t = 1 (\pi_1)$			Treatment $t = 2 (\pi_2)$	
Information available before time = <i>t</i> (H,)	H ₁ = S ₁	H ₂ =	(S ₁ , d ₁ , S ₂ (d ₁))	Time	

- Information available before t=1
 - \triangleright S_1 : data from the pre-period (e.g., demographics, past energy use)
- Information available after t=1
 - \triangleright S_1 : data from the pre-period (e.g., demographics, past energy use)
 - $ightharpoonup d_1$: treatment assignment at t=1
 - ▶ $S_2(d_1)$: data available after t = 1 (e.g., each consumer's response to d_1 , i.e., how their electricity usage responded to d_1)

Dynamic targeting



- Planner exploits both H_1 and H_2 to design targeting π
 - We allow $S_2(d_1)$ to be endogenous to d_1
 - ▶ d_1 not only affects $Y_1(d_1)$ but also affects $S_2(d_1)$

Dynamic targeting

• The optimal dynamic targeting π^* is obtained by:

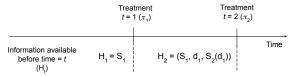
$$\max_{\pi} W(\pi) \equiv E\Big[Y_1(d_1) + Y_2(d_1, d_2)\Big],$$

s.t. $d_1 = \pi_1(H_1) \in \{T, U\},$
 $d_2 = \pi_2(H_2(d_1)) \in \{T, U\}.$

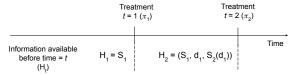
- \triangleright Y_1 and Y_2 : welfare gains in time 1 and 2
- ▶ $d_1, d_2 \in \{T, U\}$: treatment assignment in time 1 and 2
- $ightharpoonup H_1, H_2$: information available before time 1 and 2

- 1. Learning & habituation effects on $Y_2(d_1, d_2)$
 - ▶ Learning effects if $Y_2(T, T) Y_2(U, T) > 0$
 - ▶ Habituation (fatigue) effects if $Y_2(T, T) Y_2(U, T) < 0$

- 1. Learning & habituation effects on $Y_2(d_1, d_2)$
 - ▶ Learning effects if $Y_2(T,T) Y_2(U,T) > 0$
 - ▶ Habituation (fatigue) effects if $Y_2(T, T) Y_2(U, T) < 0$
- 2. Habit formation effects on $Y_2(d_1, d_2)$
 - ▶ Habit formation effects if $Y_2(T, U) Y_2(U, U) > 0$



- 3. Screening effects of $d_1 = T$ on $Y_2(d_1, d_2)$
 - ▶ Information H_2 depends on d_1 (treatment in t = 1)
 - For example, suppose $H_2(d_1 = T)$ is more informative to predict treatment heterogeneity in t = 2 than $H_2(d_1 = U)$
 - In this case, assigning $d_1 = T$ is beneficial (screening effects), even though it could come at the cost of not-maximizing welfare in t = 1

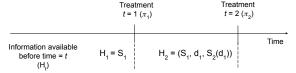


- 3. Screening effects of $d_1 = T$ on $Y_2(d_1, d_2)$
 - ▶ Information H_2 depends on d_1 (treatment in t = 1)
 - For example, suppose $H_2(d_1 = T)$ is more informative to predict treatment heterogeneity in t = 2 than $H_2(d_1 = U)$
 - In this case, assigning $d_1 = T$ is beneficial (screening effects), even though it could come at the cost of not-maximizing welfare in t = 1
 - Screening effect of $d_1 = T$ on $Y_2(d_1, d_2)$:

$$Y_2(T, \pi_2^*(H_2(T))) - Y_2(T, \pi_2^*(H_2(U)))$$

- Both terms have $d_1 = T$
- $d_2 = \pi_2^*(H_2(T))$ on the left and $d_2 = \pi_2^*(H_2(U))$ on the right

(Supplemental) The same logic applies to $d_1 = U$



- 3. Screening effects of $d_1 = U$ on $Y_2(d_1, d_2)$
 - ▶ The same logic can apply to $d_1 = U$
 - Suppose $H_2(d_1 = U)$ is more informative to predict treatment heterogeneity in t = 2 than $H_2(d_1 = T)$
 - In this case, assigning $d_1 = U$ is beneficial (screening effects), even though it could come at the cost of not-maximizing welfare in t = 1
 - ▶ Screening effect of $d_1 = U$ on $Y_2(d_1, d_2)$:

$$Y_2(U, \pi_2^*(H_2(U))) - Y_2(U, \pi_2^*(H_2(T)))$$

- Both terms have $d_1 = U$
- $d_2 = \pi_2^*(H_2(U))$ on the left and $d_2 = \pi_2^*(H_2(T))$ on the right

Decomposition of gains from dynamic targeting

- We derive a formula that decomposes dynamic targeting's welfare gain
- Welfare gains from dynamic targeting is the sum of the followings:
 - ightharpoonup Treatment effect in t=1
 - ▶ Treatment effect in t = 2
 - ► Learning effects
 - ► Habit formation effect
 - Screening effect
- We develop a method to empirically estimate each of these components

Decomposition Theorem

For any dynamic targeting policy $\pi = (\pi_1, \pi_2)$,

$$W(\pi) - W(U,U) = \underbrace{E[Y_1(T) - Y_1(U) | \pi_1(H_1) = T]}_{\text{Treatment effect on the treated in } t = 1} + \underbrace{E[Y_2(U,T) - Y_2(U,U) | \pi_2(H_2(U)) = T]}_{\text{Treatment effect on the treated in } t = 2} + \underbrace{E[Y_2(T,U) - Y_2(U,U) | \pi_1^*(H_1) = T, \pi_2^*(H_2(T)) = U]}_{\text{Habit formation effect for those assigned to } (T,U)} + \underbrace{E[Y_2(T,T) - Y_2(U,T) | \pi_1^*(H_1) = T, \pi_2^*(H_2(T)) = T]}_{\text{Learning effect for those assigned to } (T,T)}_{\text{Learning effect for those assigned to } (T,T)} + \underbrace{E[Y_2(T,\pi_2^*(H_2(T))) - Y_2(T,\pi_2^*(H_2(U))) | \pi_1^*(H_1) = T]}_{\text{P5}} \cdot P_5,$$

where $\{P_k: k=1,\ldots,5\}$ are probabilities of the conditioning events in the conditional expectations that P_k 's are multiplied to.

Screening effect for those assigned to T in t=1

Estimation Method

Empirical Welfare Maximization (EWM) method

- RCT (or quasi-experimental) data: $\{(Y_{it}, Z_{it}, H_{it}) : t = 1, 2\}$ where $Z_{it} \in \{T, U\}$ at t = 1, 2 is randomly assigned.
- With random assignment, the empirical analogue of $W(\pi)$ is

$$\begin{split} \widehat{W}(\pi) &= \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_{i1} \cdot 1\{Z_{i1} = \pi_{1}(H_{i1})\}}{P(Z_{1} = Z_{i1} \mid H_{1} = H_{i1})} \right. \\ &+ \frac{Y_{i2} \cdot 1\{Z_{i1} = \pi_{1}(H_{i1}), Z_{i2} = \pi_{2}(H_{i2})\}}{P(Z_{1} = Z_{i1} \mid H_{1} = H_{i1}) \cdot P(Z_{2} = Z_{i2} \mid H_{2} = H_{i2})} \right). \end{split}$$

• We use a class of policy trees (Zhou, Athey, Wager, 2022) for Π.

Road map of the talk

- 1. Introduction
- 2. Conceptual Framework
- 3. Estimation Method
- 4. Field Experiment and Data
- 5. Welfare Gains from Dynamic Targeting
- 6. Mechanism Behind the Dynamic Targeting
- 7. Conclusion

Field Experiment and Data

Field experiment

- 1. Treatment: A peak-hour rebate program for residential electricity use
 - Partner: Japanese Ministry of the Environment
 - Peak-hour: 1 pm to 5 pm in critical peak days in summer 2020 (t = 1)
 - Peak-hour: 5 pm to 9 pm in critical peak days in winter 2020 (t=2)
 - ▶ Baseline: Average hourly usage in the same hours before experiment
 - Customers were unaware of baseline until experiment began
 - ► All customers were on "non-dynamic retail prices"
 - Rebate = 1/kWh conservation \approx peak-hour wholesale price
 - ▶ Implementation cost per consumer = 291.1 JPY (\approx cents)
 - ► Welfare gain = a reduction in DWL implementation cost
- 2. Randomize 2,400 residential customers into four groups
 - \triangleright $(Z_1, Z_2) = (U, U)$: 625
 - $(Z_1, Z_2) = (U, T)$: 606
 - $(Z_1, Z_2) = (T, U)$: 581
 - \triangleright $(Z_1, Z_2) = (T, T)$: 588

Summary statistics and balance check

	Sample mean by group [standard deviation]			
	$\overline{(U,U)}$	(U,T)	(T, U)	(T,T)
Peak hour usage	201	200	196	198
(2020 summer, Wh)	[145]	[136]	[136]	[136]
Pre-peak hour usage	189	184	183	182
(2020 summer, Wh)	[143]	[130]	[137]	[130]
Post-peak hour usage	311	311	308	305
(2020 summer, Wh)	[175]	[171]	[164]	[163]
Peak hour usage	311	309	304	306
(2020 winter, Wh)	[194]	[170]	[179]	[170]
Pre-peak hour usage	171	171	169	166
(2020 winter, Wh)	[117]	[102]	[112]	[102]
Post-peak hour usage	287	295	280	287
(2020 winter, Wh)	[198]	[198]	[203]	[192]
Number of people at home (1 PM - 5 PM)	1.31	1.32	1.31	1.34
	[1.04]	[0.96]	[1.04]	[1.01]
Number of people at home (5 PM - 9 PM)	2.57	2.48	2.47	2.51
	[1.29]	[1.20]	[1.23]	[1.20]
Self-efficacy in energy conservation (1-5 scale)	3.44	3.44	3.47	3.44
	[0.84]	[0.86]	[0.86]	[0.82]
Household income	651	639	614	606
(JPY 10,000)	[400]	[387]	[393]	[333]

Road map of the talk

- 1. Introduction
- 2. Conceptual Framework
- 3. Estimation Method
- 4. Field Experiment and Data
- 5. Welfare Gains from Dynamic Targeting
- 6. Mechanism Behind the Dynamic Targeting
- 7. Conclusion

Welfare Gains from Dynamic Targeting

Welfare gain

- $Q_t(T)$ and $Q_t(U)$: Potential outcomes of household's peak-hour electricity consumption (kWh) in t = 1, 2
- Household's potential welfare contribution:

$$Y_t(T) \equiv \underbrace{b}_{\text{benefit}} \times \underbrace{\left(Q_t(U) - Q_t(T)\right)}_{\text{electricity conservation}} - \underbrace{c}_{\text{cost}}.$$

- b: marginal social welfare gain from a unit reduction in energy use
- c: implementation cost of the program.

We compare welfare gains form several policies

- 1. Non-targeting policies
 - ▶ Everyone is assigned to (U, U) → baseline
 - ightharpoonup Everyone is assigned to (T, U)
 - ightharpoonup Everyone is assigned to (U, T)
 - \triangleright Everyone is assigned to (T, T)
- 2. Static targeting I
 - \triangleright Planner uses only H_1 (pre-intervention information)
 - Assignment cannot change over time: (U, U) or (T, T)
- 3. Static targeting II
 - ▶ Planner uses only H_1 (pre-intervention information)
 - Assignment can change over time: (U, U), (T, U), (U, T), (T, T)
- 4. Dynamic targeting
 - ▶ Planner uses H_1 and H_2 to allocate (U, U), (T, U), (U, T), (T, T)
 - Planner solves dynamic optimization

Welfare Gains from Each Policy

Welfare gain

0.0

(0.0)

311.8

(378.4)

170.0

Policy

100% (U, U)

100% (T, U)

1000 (II T)

100% (U, T)	470.8 (457.5)	0.0%	0.0%	100.0%
$100\% \; (T,T)$	$463.9 \\ (452.2)$	0.0%	0.0%	0.0%
Static targeting I $(\pi_{S(I)}^*)$	770.6 (283.7)	45.6%	0.0%	0.0%
Static targeting II $(\pi_{S(II)}^*)$	845.3 (348.9)	3.1%	31.3%	41.5%
Dynamic targeting (π^*)	$1684.3 \\ (303.1)$	19.5%	22.9%	25.6%
Both static and dy	namic targeti	ng improves	welfare	

Both static and dynamic targeting improves welfare
Dynamic targeting can double the welfare gain compared to static targeting ²⁷/₃₇

(U,U)

100.0%

0.0%

0.007

Share of customers in each arm

(U,T)

0.0%

0.0%

100 007

(T,T)

0.0%

0.0%

0.0%

100.0%

54.4%

24.0%

32.0%

(T, U)

0.0%

100.0%

0.007

Comparisons of Alternative Policies

	Difference in welfare gains	p-value
Dynamic targeting (π^*) vs. 100% (T, U)	1365.7 (309.1)	0.000
Dynamic targeting (π^*) vs. 100% (U, T)	1546.5 (328.7)	0.000
Dynamic targeting (π^*) vs. 100% (T,T)	1397.7 (319.8)	0.000
Dynamic targeting (π^*) vs. Static targeting I $(\pi_{S(I)}^*)$	913.8 (269.2)	0.000
Dynamic targeting (π^*) vs. Static targeting II ($\pi^*_{S(II)}$)	839.1 (287.8)	0.002

• Welfare improvement from dynamic targeting is statistically significant

Road map of the talk

- 1. Introduction
- 2. Conceptual Framework
- 3. Estimation Method
- 4. Field Experiment and Data
- 5. Welfare Gains from Dynamic Targeting
- 6. Mechanism Behind the Dynamic Targeting
- 7. Conclusion

Mechanism Behind the Dynamic Targeting

Decomposition Theorem

For any dynamic targeting policy $\pi = (\pi_1, \pi_2)$,

$$W(\pi) - W(U,U) = \underbrace{E[Y_1(T) - Y_1(U) | \pi_1(H_1) = T]}_{\text{Treatment effect on the treated in } t = 1} + \underbrace{E[Y_2(U,T) - Y_2(U,U) | \pi_2(H_2(U)) = T]}_{\text{Treatment effect on the treated in } t = 2} + \underbrace{E[Y_2(T,U) - Y_2(U,U) | \pi_1^*(H_1) = T, \pi_2^*(H_2(T)) = U]}_{\text{Habit formation effect for those assigned to } (T,U)} + \underbrace{E[Y_2(T,T) - Y_2(U,T) | \pi_1^*(H_1) = T, \pi_2^*(H_2(T)) = T]}_{\text{Learning effect for those assigned to } (T,T)}_{\text{Learning effect for those assigned to } (T,T)} + \underbrace{E[Y_2(T,\pi_2^*(H_2(T))) - Y_2(T,\pi_2^*(H_2(U))) | \pi_1^*(H_1) = T]}_{\text{P5}} \cdot P_5,$$

where $\{P_k: k=1,\ldots,5\}$ are probabilities of the conditioning events in the conditional expectations that P_k 's are multiplied to.

Screening effect for those assigned to T in t=1

Decomposition of gains from dynamic targeting

• We derive a formula that decomposes dynamic targeting's welfare gain:

$$W(\pi^*) - W(U, U)$$

- = Treatment effect on the treated in t=1
- + Treatment effect on the treated in t = 2
- + Habit formation effect for those assigned to (T, U)
- + Learning effect for those assigned to (T, T)
- + Screening effect for those assigned to T in t = 1

Decomposition of gains from dynamic targeting

	Welfre contribution
1st-stage treatment effect	214.3 (103.0)
2nd-stage treatment effect	563.5 (198.3)
Habit formation effect	287.4 (184.4)
Learning effect	186.4 (128.8)
Screening effect	361.5 (98.0)
Total effect	1613.1 (397.8)

Conclusion

We theoretically and empirically study dynamic targeting

- 1. Setting: A costly treatment that could generate a social welfare gain
 - Field experiment: A peak-hour rebate program for energy conservation
 - ▶ Benefit: A reduction in DWL if a participant actually conserves energy
 - Cost: Implementation cost per participating household
 - ► Goal: Find dynamically-optimal targeting for a multi-period intervention
- 2. Use an RCT & the Empirical Welfare Maximization (EWM) to identify
 - Who should be treated & when they should be treated
- 3. Test hypotheses for several possible mechanisms
 - Learning (or fatigue) effects
 - Habit formation effects
 - Screening effects

Thank you!

Koichiro Ito (ito@uchicago.edu)

