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Abstract

We develop an optimal policy assignment rule that integrates two distinctive approaches commonly used
in economics—targeting by observables and targeting through self-selection. Our method can be used
with experimental or quasi-experimental data to identify who should be treated, be untreated, and self-
select to achieve a policymaker’s objective. Applying this method to a randomized controlled trial on a
residential energy rebate program, we find that targeting that optimally exploits both observable data and
self-selection outperforms conventional targeting. We use the Local Average Treatment Effect (LATE)
framework (Imbens and Angrist, 1994) to investigate the mechanism in our approach. By estimating
several key LATEs based on the random variation created by our experiment, we demonstrate how our
method allows policymakers to identify whose self-selection would be valuable and harmful to social
welfare.
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1 Introduction

Targeting has become a central question in economics and policy design. When policymakers face

budget constraints, identifying those who should be treated is critical to maximizing policy impacts. Ad-

vances in machine learning and econometric methods have led to a surge in research on targeting in many

policy domains, including job training programs (Kitagawa and Tetenov, 2018), social safety net programs

(Finkelstein and Notowidigdo, 2019; Deshpande and Li, 2019), energy efficiency programs (Burlig, Knittel,

Rapson, Reguant, and Wolfram, 2020), behavioral nudges for electricity conservation (Knittel and Stolper,

2021), and dynamic electricity pricing (Ito, Ida, and Takana, 2023).

Economists generally consider two distinctive approaches to the design of effective targeting. The first

approach is based on observable characteristics. In this approach, policymakers use individuals’ observable

data to explore optimal targeting (Kitagawa and Tetenov, 2018; Athey and Wager, 2021). The second

approach is based on self-selection. In this approach, policymakers consider individuals’ self-selection

as valuable information to target certain individual types (Heckman and Vytlacil, 2005; Heckman, 2010;

Alatas, Purnamasari, Wai-Poi, Banerjee, Olken, and Hanna, 2016; Ito, Ida, and Takana, 2023).

A priori, which approach is desirable for policymakers is unclear. For example, referring to the two

distinctive approaches above as “planner’s decisions" and “laissez-faire," Manski (2013) summarizes,

“The bottom line is that one should be skeptical of broad assertions that individuals are better

informed than planners and hence make better decisions. Of course, skepticism of such as-

sertions does not imply that planning is more effective than laissez-faire. Their relative merits

depend on the particulars of the choice problem."

—Charles F. Manski, Public Policy in an Uncertain World

A common view in the literature, reflected in this quote, is that the appropriate approach depends on the

context, and therefore, researchers and policymakers need to decide which to use on a case-by-case basis. In

this study, we develop an optimal policy assignment rule that systematically integrates these two distinctive

approaches commonly used in economics. Consider a treatment from which the social welfare gains are

heterogeneous across individuals and can be positive, negative, or zero, depending on who takes the treat-

ment. Our comment is that policymakers can leverage both of the observable and unobservable information

by considering three treatment arms, treated, untreated, and free to choose. Once these individual types
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are identified, policymakers can design a targeting policy that takes advantage of observed and unobserved

heterogeneity in the treatment effect.

We begin by formulating this idea by characterizing a social planner’s optimal policy assignment prob-

lem following the statistical treatment choice literature (Manski, 2004). We highlight that the Local Average

Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be used to investigate the mechanism

in our approach. When individuals have an option to take a treatment, we can define two individual types.

Takers are those who would take the treatment and non-takers are those who would not take the treatment.

We demonstrate that the planner’s decision rule can be characterized by the LATEs for takers and non-takers

as well as the average treatment effect (ATE), all conditional on individuals’ observable characteristics.

We then show that the optimal policy assignment rule, LATEs for takers and non-takers and the ATE

can be identified and estimated by a randomized controlled trial (RCT) or a quasi-experiment with three

randomly-assigned groups: an untreated group, a treated group, and a self-selection group. To estimate

the optimal policy assignment, we use the empirical welfare maximization (EWM) method developed by

Kitagawa and Tetenov (2018) with policy trees (Zhou, Athey, and Wager, 2023). Further, we demonstrate

that the conventional estimation strategy for the LATE (Imbens and Angrist, 1994) can be applied to the

three randomly-assigned groups to estimate the LATEs for takers and non-takers.

Our theoretical framework clarifies what variation has to be generated by an RCT or quasi-experiment

to estimate the optimal policy assignment. With this insight, we designed an RCT on a residential electricity

rebate program and implemented a field experiment in collaboration with the Japanese Ministry of Environ-

ment. The policy goal of the rebate program is to incentivize energy conservation in peak demand hours

when the marginal cost of electricity tends to be substantially higher than the time-invariant residential elec-

tricity price. In our context, the social welfare gain from this rebate program can be heterogeneous across

individuals and can be positive, negative, or zero given the existence of per-household implementation cost.

This implies that optimal targeting could improve the social welfare gain from this program.

We randomly assigned households to an untreated group, a treated group, and a self-selection group

to generate data for our empirical analysis. Using the data from this RCT, we estimate the optimal policy

assignment, the ATE, and LATEs for takers and non-takers. We then use our framework to quantify the pro-

gram’s social welfare gain for each of the five policies: i) all consumers get untreated, ii) all consumers get

treated, iii) all consumers self-select, iv) optimal targeting without self-selection (selection-absent target-

ing), and v) optimal targeting with self-selection (selection-driven targeting). Our findings suggest that the
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selection-driven targeting substantially improves welfare relative to the non-targeting policies and selection-

absent targeting. The optimal assignment in the selection-driven targeting suggests that 24% of households

in our sample should be untreated, 31% should be treated, and 45% should self-select. The welfare gain

from the selection-driven targeting more than doubles compared to the selection-absent targeting.

We then use the LATE framework described above to investigate the mechanism in our optimal policy

assignment. Given the random assignment in our field experiment, we are able to estimate the LATEs for

takers and non-takers conditional on observables. This implies that we can estimate these LATEs for each

of the three groups obtained by the optimal assignment rule. Consider households who would be assigned

to the self-selection group by the optimal assignment rule. For these households, we find that the LATE

for takers is positive and large, and the LATE for non-takers is negative. Hence, self-selection is useful for

the planner to sort customers in this group to get treated or untreated by their choice. In contrast, these two

LATEs for those who are not assigned to the self-selection group suggest that allowing self-selection for

them would not be optimal because the planner can obtain higher social welfare gains by assigning them to

either compulsory treatment or compulsory un-treatment.

Related literature and our contributions—Our study is related to three strands of the literature. First,

many recent studies in economics have explored targeting based either on “observables" or “unobserv-

ables" through self-selection. Along with the papers cited earlier in this introduction, recent studies on

targeting solely based on individuals’ observable characteristics include Johnson, Levine, and Toffel (2023);

Murakami, Shimada, Ushifusa, and Ida (2022); Cagala, Glogowsky, Rincke, and Strittmatter (2021); Chris-

tensen, Francisco, Myers, Shao, and Souza (2024); Gerarden and Yang (2023) and studies on targeting based

on self-selection include Dynarski, Libassi, Michelmore, and Owen (2021); Lieber and Lockwood (2019);

Unrath (2021); Waldinger (2021). However, to the best of knowledge, this is the first study to build an algo-

rithm that systematically integrates these two distinctive targeting approaches to maximize a policy’s social

welfare gain.1

Second, the medical statistics literature has studied hybrid sampling designs that combine randomization

and treatment choice by patients. See, e.g., Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003), Long,

Little, and Lin (2008), and references therein. In the medical literature, the sampling process used in our

experiment is referred to as “a doubly randomized preference trial" (Rücker, 1989). An example of a clinical
1 For example, Gerarden and Yang (2023) and other recent studies on residential electricity demand explore targeting based on

the observable characteristics of customers without using self-selection. Our study differs from these studies because our objective
is to develop an algorithm that systematically integrates targeting based on self-selection and observables.
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trial that implements a doubly randomized preference design is the Woman Take Pride study analyzed in

Janevic, Janz, Dodge, Lin, Pan, Sinco, and Clark (2003). These studies focus on assessing whether letting

patients choose their own treatment can have a direct causal effect on their health status beyond the causal

effect of the treatment itself. See Knox, Yamamoto, Baum, and Berinsky (2019) for partial identification

analysis in such a context and an application to political science. Doubly randomized preference trials have

received less attention in economics. Bhattacharya (2013) is the only study that uses double randomization

between randomized control trials and planner’s allocation to assess the efficiency of the planner’s treatment

allocations. To our knowledge, no work has analyzed doubly randomized preference trial data to integrate

targeting by observable characteristics and targeting through self-selection.

Third, our econometric framework builds on the growing statistical treatment choice literature. Gener-

ally assuming discrete characteristics, earlier studies in this literature (Manski, 2004; Dehejia, 2005; Hirano

and Porter, 2009; Stoye, 2009, 2012; Chamberlain, 2011; Tetenov, 2012, among others) formulate estima-

tion of a treatment assignment rule as a statistical decision problem. The empirical welfare maximization

approach proposed by Kitagawa and Tetenov (2018) estimates a treatment assignment rule by maximizing

the in-sample empirical welfare criterion over a class of assignment rules. As shown in Online Appendix of

Kitagawa and Tetenov (2018) and Zhou, Athey, and Wager (2023), this approach can accommodate multi-

armed treatment assignment and a rich set of household characteristics, including continuous characteristics,

as in our empirical application. We employ a class of tree partitions considered in Athey and Wager (2021)

and Zhou, Athey, and Wager (2023) as our class of policy rules. Finally, building on the LATE framework

by Imbens and Angrist (1994), we demonstrate that the newly-defined estimators, the LATEs for takers and

non-takers, can be used to investigate the mechanism in the optimal policy assignment in the presence of

self-selection. These LATE estimands can be viewed as the complier’s average treatment effects under a

multi-valued discrete instrument, which indexes the three arms randomly assigned in the experiment.

2 Conceptual Framework

In this section, we present a theoretical framework of optimal policy assignment in the presence of self-

selection. We begin by formulating an optimal policy assignment problem in Section 2.1. In Section 2.2,

we present that the Local Average Treatment Effect (LATE) framework (Imbens and Angrist, 1994) can be

used to investigate the mechanism in our approach. In Section 2.3, we describe how to empirically estimate
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the optimal policy assignment and LATEs using data from an RCT and the EWM method.

2.1 Optimal Policy Assignment in the Presence of Self-Selection

Consider a planner who wishes to introduce a policy intervention (program) to a population of interest.

Instead of the uniform assignment over the entire population, the planner is interested in targeted assignment

for heterogeneous individuals. A novel feature of our setting is that the planner can control not only who is

compulsorily exposed to the program but also who is given an option to opt-in to the program. Interpreting

an individual’s take-up of the program as their exposure to the treatment, the planner’s goal is therefore

to assign each individual in the population to one of the three arms: compulsorily treated (indexed as T ),

compulsorily untreated (indexed as U ), and self-selection (indexed as S). An individual assigned to T or U

is exposed to or excluded from the program with no opt-out or opt-in option, whereas an individual assigned

to S chooses whether to take it up by themselves. In our RCT, the treatment refers to participation in the

energy rebate program, rather than assignment to the program. Hence, individuals assigned to T and U

are those who are compulsorily exposed to and excluded from the rebate program, respectively. Individuals

assigned to S are those who are given the choice to decide whether to participate in the program on their

own.

The planner’s goal is to optimize a social welfare criterion by assigning individuals to these three arms.

Following the statistical treatment choice literature (Manski, 2004), we specify the planner’s social welfare

criterion to be the sum of individuals’ welfare contributions. An individual’s welfare contribution is a known

function of the individual’s response to being assigned to arm T , U , or S, and the per-person cost of the

treatment. An individual’s welfare contribution may not correspond to their utility. Hence, if an individual

is assigned to S, their utility maximizing decision may not correspond to the choice that maximizes the

planner’s objective. For example, some individuals assigned to S participate in the energy rebate program

to obtain monetary benefits but save less electricity consumption than that needed to compensate for the

implementation cost of the program for the planner.

Let YT , YU , and YS denote the potential welfare contributions that would be realized if an individual

were assigned to T , U , and S. We assume that the planner observes a pre-treatment characteristic vec-

tor for each individual x 2 X , where X denotes the support of the characteristics. Depending on these

observable characteristics, the planner assigns each individual to one of the three arms. We consider par-

titioning the characteristics space X into three subspaces GT , GU , and GS . We denote by GT ✓ X a
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set of the pre-treatment characteristics x such that any individual whose x belongs to GT is assigned to

T . Similarly, GU and GS denote sets of the pre-treatment characteristics x such that the individuals with

x 2 GU are assigned to U and individuals with x 2 GS are assigned to S. Let eG := {G = (GT , GU , GS) :

G is a measurable partition of X} be the set of feasible partitions.

We call a partition G := (GT , GU , GS) an assignment policy. G describes how individuals are assigned

to arms according to their observable characteristics x. The realized welfare contribution after assignment

for an individual with characteristics x is either YT , YU , or YS depending on x 2 GT , x 2 GU , or x 2 GS .

Hence, their welfare contribution under the policy G can be written as
P

j2{T,U,S} Yj · 1{x 2 Gj}. Viewing

individual characteristics and their potential welfare contributions as random variables, the average welfare

contribution under assignment policy G can be written as

W(G) ⌘ E

2

4
X

j2{T,U,S}

Yj · 1{X 2 Gj}

3

5 , (1)

where the expectation is with respect to (YT , YU , YS , X).

We define W(G) as our social welfare function. The social welfare function depends on the assignment

policy G through the post-assignment distribution of individual welfare contributions, which can be manip-

ulated by changing the individuals assigned to the different arms. This form of social welfare is standard in

the statistical treatment choice literature. Yj is not restricted to any specific functional form. Therefore, the

planner can choose an appropriate social welfare function.

The planner’s objective is to find the optimal assignment policy G⇤ that maximizes the social welfare

W(G) over a set of possible assignment policies. If the planner can implement any assignment policy, this

set of assignment policies corresponds to the set of measurable partitions of X . G⇤ can be defined by

G⇤ 2 argmax
G2eG

W(G). (2)

It is desirable that individuals with characteristics x be assigned to an arm that provides the largest con-

ditional mean welfare contribution among {E[Yj |x] : j 2 {T, U, S}}. In the absence of a self-selection

treatment arm, the planner’s assignment policy is to allocate them to either T or U . The optimal choice is

then determined by comparing E[YT |x] and E[YU |x]. In other words, an optimal assignment policy exploits

only heterogeneity in the average welfare contribution conditional on observable characteristics x, which
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can be assessed by the planner prior to assignment (e.g., Johnson, Levine, and Toffel (2023); Murakami,

Shimada, Ushifusa, and Ida (2022); Cagala, Glogowsky, Rincke, and Strittmatter (2021); Christensen, Fran-

cisco, Myers, Shao, and Souza (2024); Gerarden and Yang (2023)). We use G† to denote this sub-optimal

policy assignment and call it the selection-absent targeting.

Once individuals are permitted to self-select treatment, social welfare can be improved beyond the level

attained by the selection-absent targeting. This is because an individual may possess private information,

which drives or helps predict their response to the treatment, and choose whether to receive treatment based

on it. Importantly, there can be significant heterogeneity in the usefulness of self-selection for the planner’s

objective. Individuals with some values of x choose by themselves the treatment that is optimal in terms of

the social welfare. In contrast, individuals with other values of x may choose treatment that does not improve

social welfare. Moreover, under some conditions x, the individuals would select the same treatment as the

social planner. Thus, an optimal assignment policy that identifies who should be assigned to S along with

T and U could further improve welfare. We use G⇤ to denote this optimal policy assignment and call it

the selection-driven targeting. In this case, the planner allocates individuals with x to either T , U , or S by

comparing E[YT |x], E[YU |x], and E[YS |x].2

2.2 Using the LATE Framework to Investigate the Mechanism

In this section, we present a simple model that clarifies how the optimal assignment policy G⇤ assigns T ,

U , and S to individuals in accordance with individual observable characteristics x. Let DS 2 {0, 1} denote

the individual’s take-up of treatment when assigned to S. DS = 1 means that the consumer would take the

treatment if she is assigned to S, and DS = 0 means that she would not take the treatment if she is assigned

to S. The choice DS may depend on both observable characteristics X and unobservable characteristics

(i.e., private information). Note that the potential outcomes are the quadruple (YT , YU , YS , DS).

We define the LATEs for takers and non-takers as follows, which will be useful statistics to characterize

the mechanism of optimal policy assignment.

Definition 2.1. (The LATEs for takers and non-takers) We define the LATE for takers by E[YT�YU |DS = 1]

and the LATE for non-takers by E[YT � YU |DS = 0].3

2This also implies that comparing the sub-optimal assignment policies (such as the assignment policy with T and U only)
against the optimal assignment policy allows us to estimate the welfare cost of eliminating an arm option or options.

3An alternative way to define E[YT � YU |DS = 1] and E[YT � YU |DS = 0] is to use the average treatment effects on the
treated (ATT) and the average treatment effects on the untreated (ATU). E[YT �YU |DS = 1] is the ATT for individuals assigned to
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In our RCT, the takers are individuals who voluntarily participate in the energy rebate program. The

non-takers, on the other hand, are those who choose not to participate in the program when assigned to S.

Additionally, we make the following assumption. Importantly, this assumption is not required for the

validity of our method (Section 2.1) and main empirical results (Section 4), but it is useful to investigate the

mechanism in this section and Section 5.

Assumption 2.2. YS = DSYT + (1�DS)YU .

The meaning of Assumption 2.2 is that an individual’s response to the treatment is the same irrespec-

tive of whether they self-select themselves or are assigned to it by the planner. That is, who chooses the

treatment, either the individuals themselves or the planner, does not have causal impact on the individuals’

outcomes, and this can be viewed as the exclusion restriction for instrumental variables, with an indicator

for assignment to the self-selection treatment corresponding to an instrumental variable.

We use p1(x) = P (DS = 1|x) and p0(x) = P (DS = 0|x) to denote the probability of take-up

conditional on x. Under Assumption 2.2, E[Yj |x] can be decomposed by,

E[Yj |x] =

8
>><

>>:

p1(x) · E[YT |DS = 1, x] + p0(x) · E[YU |DS = 0, x] if j = S

p1(x) · E[Yj |DS = 1, x] + p0(x) · E[Yj |DS = 0, x] if j 2 {T, U}.
(3)

We can use equation (3) to investigate how the planner ranks the three assignments (T, U, S) for in-

dividuals with x. First, consider what condition makes the planner prefer S over U . Equation (3) im-

plies that E[YS � YU |x] = p1(x) · E[YT � YU |DS = 1, x]. Assuming p1(x) > 0, E[YS � YU |x] � 0

if only if E[YT � YU |DS = 1, x] � 0. That is, the LATE for takers has to be greater than or equal

to 0. Second, consider what condition makes the planner prefer S over T . Equation (3) implies that

E[YS � YT |x] = p0(x) · E[YU � YT |DS = 0, x]. Assuming p0(x) > 0, E[YS � YT |x] � 0 if only if

E[YT � YU |DS = 0, x]  0. That is, the LATE for non-takers has to be less than or equal to 0.

Finally, the condition that makes the planner prefer T over U is trivial such that E[YT � YU |x] � 0.

Combining the three conditions, we can characterize the optimal assignment policy G⇤ as defined in equation

group S and E[YT �YU |DS = 0] is the ATU for individuals assigned to group S. In our context, these terms could create confusion
because there is another ATT for those assigned to the compulsory treatment group (T ) and another ATU for those assigned to the
compulsory untreated group (U ). To avoid this confusion, we use the terms defined in definition 2.1.
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(2) that has the form G⇤ = (G⇤
T , G

⇤
U , G

⇤
S) with

G⇤
T = {x 2 X : E[YT � YU |x] � 0 and E[YT � YU |DS = 0, x] > 0},

G⇤
U = {x 2 X : E[YT � YU |x] < 0 and E[YT � YU |DS = 1, x] < 0},

G⇤
S = {x 2 X : E[YT � YU |DS = 1, x] � 0 and E[YT � YU |DS = 0, x]  0}.

(4)

Equation (4) implies that the key statistics that characterize the optimal assignment mechanism are the ATE

(E[YT � YU |x]), the LATE for takers (E[YT � YU |DS = 1, x]), and the LATE for non-takers (E[YT �

YU |DS = 0, x]), all conditional on observables. Figure 1 illustrates an example of how an optimal policy

G⇤ is characterized in the two-dimensional characteristic space X .

2.3 Estimation

In this section, we describe how data from an RCT allows us to estimate the optimal policy assignment

(G⇤) presented in Section 2.1 and LATEs for takers and non-takers described in Section 2.2. To estimate

G⇤, we use the EWM method in Kitagawa and Tetenov (2018). Let the RCT data be a size n random

sample of (Yi, Zi, Xi), where Zi 2 {T, U, S} is individual i’s randomly-assigned treatment arm, Yi is their

observed outcome (welfare contribution), and Xi are their observable pre-treatment characteristics. We

use {YT,i, YU,i, YS,i} to denote potential outcomes for individual i. The observed outcome Yi is subject

to Yi =
P

j2{T,U,S} Yj,i · 1{Zi = j}. We assume that {YT,i, YU,i, YS,i, Xi}i=1,...,n are independently and

identically distributed as {YT , YU , YS , X}.

Using the RCT data and a class G of policies G, the EWM method estimates an optimal policy G⇤ by

maximizing the empirical analogue of the social welfare function over G:

Ĝ⇤ 2 argmax
G2G

cW(G), where cW(G) ⌘ 1

n

nX

i=1

X

j2{T,U,S}

✓
Yi · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi 2 Gj}
◆
, (5)

where cW(G) is an empirical welfare function of G that produces an unbiased estimate of the population

social welfare W(G). Observations are weighted by the inverse of the propensity scores, P (Zi = j|Xi),

which are known from the RCT design.

The EWM approach is model-free: It does not require any assumptions or a functional form specification

for the potential outcome distributions. However, the class of policies G must be specified, considering any
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feasibility constraints for assignment policies. If the class G is too rich, the EWM solution Ĝ⇤ overfits the

RCT data, and the social welfare attained by the estimated policy falls. We use a class of decision trees

(Breiman, Friedman, Olshen, and Stone, 2017) as G because of the ease of interpretation of the decision

tree-based assignment policies and the availability of partition search algorithms from the classification tree

literature.

We now demonstrate that the LATE for takers (E[YT�YU |Ds = 1, x]) and non-takers (E[YT�YU |DS =

0, x]) can be also identified and estimated by the RCT data under Assumption 2.2. Supposing that the

experimental assignment Z is randomly assigned and that Assumption 2.2 holds, our identification strategy

is the same as that of Imbens and Angrist (1994).4 We denote the observed take-up by D 2 {0, 1}, which

obeys D = 1{Z = T} + 1{Z = S,DS = 1}. Furthermore, we suppress the dependence on x for ease of

notation, although all expectations are taken conditional on x.

First, we discuss the identification and estimation of the LATE for takers. As illustrated in Section 2.2,

the ITT between S and U (i.e., E[YS�YU ]) equals to p1·E[YT�YU |DS = 1] where p1 = P (DS = 1). Then,

the experimental variation of S and U allows us to identify the ITT and p1 by E[Y |Z = S]�E[Y |Z = U ]

and P (D = 1|Z = S), respectively. Consequently, the LATE for takers can be identified by

E [YT � YU |DS = 1] =
E [Y |Z = S]� E [Y |Z = U ]

P (D = 1|Z = S)
. (6)

This identification result is simply the application of the conventional LATE framework to experimental

groups S and U . Thus, we can estimate this LATE by running the instrumental variable (IV) estimation

using data from two groups (Z 2 {S,U}) with the randomly-assigned Z as an instrument for take-up D.

Similarly, the ITT between T and S (i.e., E[YT � YS ]) can be written as p0 · E[YT � YU |DS = 0]

with p0 = P (DS = 0). The experimental variation of T and S allows us to identify the ITT and p0 by

E[Y |Z = T ]� E[Y |Z = S] and P (D = 0|Z = S). Thus, the LATE for non-takers can be identified by

E [YT � YU |DS = 0] =
E [Y |Z = T ]� E [Y |Z = S]

P (D = 0|Z = S)
. (7)

This result can be regarded as the application of conventional LATE framework to experimental groups T
4In general, the identification of LATE requires monotonicity assumption. In our application, this assumption is automatically

satisfied by the nature of groups. In fact, if we define DT 2 {0, 1} and DU 2 {0, 1} as the individual’s potential take-up when
assigned to T and U , it always holds that 1 ⌘ DT � DS � DU ⌘ 0 since non-compliance is not allowed under T and U .
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and S. In our empirical application in Section 2.2, we estimate equations (6) and (7).

Similarly to the testable implications of the instrument validity assumption for LATE models shown by

Balke and Pearl (1997), Imbens and Rubin (1997), Heckman and Vytlacil (2005), and Kitagawa (2015),

non-negativity of the potential outcome distributions for takers and non-takers identified by Assumption 2.2

and the random assignment of Z requires the following inequalities on the distribution of observables:

f(y|Z = T ) � f(y|D = 1, Z = S) · P (D = 1|Z = S), (8)

f(y|Z = U) � f(y|D = 0, Z = S) · P (D = 0|Z = S)

for all y 2 R, where f(y|·) denotes the probability density function of the observed outcome Y conditional

on the corresponding event. The instrument validity test available in the literature such as the test of Kita-

gawa (2015) can be applied to empirically assess these inequalities and it can serve as a specification test for

Assumption 2.2. We perform this test with our data in Section 5.

3 Field Experiment and Data

The framework in Section 2 highlighted that data from an RCT can be used to estimate the optimal policy

assignment in the presence of self-selection. In this section, we describe how we designed and implemented

such an RCT in the context of a residential energy rebate program in Japan. Section 3.1 provides an overview

of the field experiment. Section 3.2 presents summary statistics and balance test.

3.1 Field Experiment

We conducted our field experiment in the summer of 2020 in collaboration with the Ministry of the

Environment, Government of Japan in the Kansai (around Osaka) and Chubu (around Nagoya) regions of

Japan. To include a broad set of households, we invited customers in these regions both by letter and email

with a participation reward with 2000 JPY (⇡ 20 USD, given 1 ¢ ⇡ 1 JPY in the summer of 2020). A

total of 4446 customers pre-registered for the experiment. Non-residential customers, those who canceled

their electricity contracts in the middle of the experiment, and those who have incomplete high-frequency

electricity usage data were excluded. This left us with 3870 residential customers. That is, our experiment

was an RCT for households who agreed to participate in the experiment, which is common in the literature
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of residential electricity demand (Wolak, 2011; Ito, Ida, and Takana, 2023).5

We randomly assigned the 3870 households to one of the following three groups: an untreated group

(U ), a treated group (T ), and a self-selection group (S).6

Untreated group (U ): 1577 customers did not participate in the rebate program.

Treated group (T ): 1486 customers participated in the rebate program.

Selection group (S): 807 customers were asked to self-select into the rebate program.

The rebate program in our experiment is called the “peak-time rebate" (PTR) program (Wolak, 2011).

The fundamental inefficiency in electricity markets in many countries is that residential electricity prices do

not fully reflect the time-varying marginal cost of electricity. In peak hours, the time-invariant residential

price tends to be too low relative to time-variant marginal cost. This creates a text-book example of short-

run deadweight loss. The goal of peak-time rebate programs is to lower this deadweight loss by setting the

rebate so that the price minus the rebate is equal to the marginal cost.

The objective of our PTR was to reduce residential electricity consumption in the system peak hours (be-

tween 1 pm and 5 pm) during the week of August 24 to 30, 2020. To prevent customers from manipulating

their baseline usage, we did not tell them how the baseline was calculated until August. The baseline usage

is each customer’s average electricity usage during the peak hours from July 1 to 31. During the treatment

week (from August 24 to 30), customers who enrolled in the rebate program received a rebate that was equal

to the energy conservation during the peak hours relative to the baseline (kWh) times 100 JPY per 1kWh.

Customers who enrolled in the program were notified about the information about the treatment week, peak

hours, and reward calculation procedure in the beginning of August.

Customers in the selection group (S) were asked to send an email or a prepaid post card during the two-

week period from July 31 to August 11 if they intended to participate in the rebate program. The take-up

rate was 37.17%, which was rather higher than those for Critical Peak Pricing (CPP) in previous studies.7

As mentioned above, the PTR never make consumers pay more, unlike the CPP treatment, which may have

contributed to the higher take-up rate. At the same time, although the PTR would not make any participating
5Because our experiment was an RCT for households who agreed to participate in the experiment, the external validity of the

sample is an important question. To investigate this point, we collected data from a random sample of 2070 customers who resided
in the experimental locations but did not participate in the experiment. We find that the experimental sample has slightly higher
sample averages in their monthly electricity usage, number of people at home on weekdays, self-efficacy in energy conservation,
and household income.

6The random assignment process was designed such that U : T : S= 2: 2: 1. A relatively large number of households were
assigned to the U and T groups in consideration that the data for these groups was going to be used for other studies.

7The take-up rate for the CPP was 20% in Fowlie et al. (2021) and 16% (without a take-up incentive) in Ito et al. (2023).
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household worse off financially, the take-up rate was lower than 100%, which could imply that there were

non-financial reasons for a relatively low take-up, including inertia to participate in a new program.

3.2 Data and Summary Statistics

Our primary data is household-level electricity usage over a 30-minute interval. We collected this data

in the pre-experimental period (from July 1 to 31, 2020) and the experimental period (from August 24 to 30,

2020). We also conducted a survey before the experiment to collect a variety of household characteristics.

Table 1 presents summary statistics and balance check. Columns 1, 2, and 3 present the sample aver-

ages by the randomly-assigned group with the standard deviations in brackets. Columns 4 to 6 report the

difference in sample means with the standard error in parentheses. The first three variables are electricity

usage (watt hour per 30-minute) in peak hours (from 1 pm to 5 pm), pre-peak hours (from 10 am to 1 pm),

and post-peak hours (from 5 pm to 8 pm). The rest of the variables are from the survey. “Number of peo-

ple at home" is the number of household members usually at home on weekdays. The survey also asked

the self-efficacy in energy conservation using the 5-point Likert scale, in which higher scores imply higher

self-efficacy. The household income is reported in 10000 JPY. “All electric" equals one if a customer has

an all-electric service with no natural gas service. The survey also asked about the numbers of room air

conditioners, electric fans, household members, and the total living area.

4 Optimal Assignment Policy and Welfare Gains

In this section, we apply the framework developed in Section 2 to our experimental data. In our frame-

work, the planner’s objective is to find the optimal policy assignment rule G⇤ = (G⇤
U , G

⇤
T , G

⇤
S) that maxi-

mizes the welfare gain W(G). We define W(G) in our empirical context in Section 4.1, describe exogenous

parameters and estimation details in Section 4.2, and report the results in Section 4.3.

4.1 Construction of the Social Welfare Criterion

We use p and c to denote the price and marginal cost of electricity. In peak hours, the time-invariant

residential price p tends to be too low relative to c. The goal of peak-time rebate programs is to reduce

welfare loss from this economic inefficiency by setting the rebate incentive equal to c.
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Consider a household that takes the rebate program. We use QU and QT to denote the potential untreated

and treated outcomes of electricity consumption. We assume a locally-linear demand curve for electricity

usage. Then, the short-run social welfare gain from this program can be written by 1
2(p � c)(QT � QU ).

Further, we consider that the reduction in consumption creates an additional long-run social welfare gain as it

saves the cost of power plant investments. We denote this long-run gain by �(QT �QU ), where � is the price

per kW in the capacity market. Finally, the participation to the rebate program incurs an implementation

cost per customer by a.

Then, for each j 2 {U, T, S}, the social welfare gain from the rebate program can be written by,

�Yj := Yj � YU = b · (Qj �QU )� a · 1{Dj = 1}, (9)

where Yj is the potential outcome of social welfare for j 2 {U, T, S}, Qj is the potential outcome of

electricity usage, Dj is the potential outcome of consumer’s take-up of the program for j 2 {U, T, S}, and

b = 1
2(p� c) + �. Note that �b ·QU in equation (9) does not depend on policy assignment, and therefore,

we can replace �Yj with Yj ⌘ b ·Qj � a · 1{Dj = 1} and define an population optimal assignment policy

G⇤ as a maximizer of the criterion of W(G) = E[Yj · 1{X 2 Gj}]. Using the sample, we estimate G⇤ by

maximizing the following objective function with respect to G over a class of policies G:

cW(G) =
1

n

nX

i=1

X

j2{U,T,S}

Yi · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi 2 Gj}, (10)

where i indicates each household in the sample, n is the sample size, Yi = b · Qi � a · 1{Di = 1}, Qi is

the observed electricity usage for household i, Di = 1 if household i is treated, and Zi 2 {U, T, S} is the

randomly-assigned group.

4.2 Estimation Details

Equation (9) includes four exogenous parameters: p, c, a, and �. We use data from the Japanese elec-

tricity market during our experimental period to set the values for these parameters. p is the unit price of

electricity. We set p = 25 JPY/kWh, approximately the regulated price of electricity in Japan, which is

independent of the time of a day. c is the marginal cost of production for electricity. We specify c = 125

JPY/kWh, so that the difference between p and c is equal to the rebate per kWh, which is 100 JPY. The
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wholesale price of electricity sometimes soars during peak hours such as summer afternoons or winter

evenings, reflecting supply constraints. In the past, the wholesale price has occasionally exceeded 100

JPY/kWh in summer afternoons. Parameter a represents the administrative cost of implementing our energy

saving program. This cost comprises several items, including the installation cost of the Home Energy Man-

agement System (HEMS). In 2016, the Japanese government estimated the cost of implementing a demand

reduction program, including the installation cost of HEMS, to be 291.1 JPY per household per season (Ida

and Ushifusa, 2017). We use this as the value of the administrative cost.

Parameter � represents the long-term benefits of a unit reduction in energy consumption. We consider

the effect of a unit reduction on the capacity market, where future supply capacity is traded between the

power generation and retail sectors. In Japan, the capacity market was established in 2020, with the first

auction held at that time. In that auction, the Japanese government provided a reference price 9425 JPY/kW

to bidders, which we use as the value for �.

To estimate the optimal policy G⇤, we need to solve the optimization problem with the objective function

in Section 4.1. To do so, we specify the policy class to be the class of decision trees of depth 6. We select

five variables among candidates to be used in constructing the decision trees. The first two variables are

constructed by each household’s hourly electricity usage data in the pre-experimental period: the average

usage in peak hours relative to pre-peak hours and the average usage in peak hours relative to post-peak

hours. The other three variables are from pre-experimental survey data: household income, the number of

household members usually at home on weekdays, and a measure of the households’ self-efficacy in energy

conservation. We select these variables by running two off-the-shelf machine learning algorithms, lasso

(least absolute shrinkage) and random forest, with all the available covariates and assessing the importance

of each variable. For lasso, we regress Qi on all the available covariates with a l1-penalization term. We

order variables in terms of importance by increasing the penalization parameter step-wise and checking

which variables remain selected for large penalization parameter values. For random forest, we estimate the

conditional average treatment effects with the causal forest algorithm of Wager and Athey (2018) with all

available covariates. We use the frequency with which a variable is used to split nodes as a measure of its

importance. These selected variables are those that appeared on the lists of important variables produced by

both methods.

We use the decision tree at depth 6, and maximize the empirical welfare criterion by applying the ex-
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haustive search algorithm of Zhou, Athey, and Wager (2023).8 An important technical detail of the EWM

estimation is that the optimized empirical welfare value from the estimation will be an upwardly biased

estimate of the true welfare attained by the estimated policy. This is known as the winner’s curse bias (see,

e.g., Andrews, Kitagawa, and McCloskey, 2024), and is caused by using the same data twice: once to learn

the policy and once to infer the policy’s welfare.9

To mitigate the winner’s curse bias in our point estimates and confidence intervals, we create an artificial

test sample by running random forest regressions of the outcome onto all the covariates with cross-fitting,

and generating outcome observations by the sum of regression fits and permuted regression residuals. We

then estimate the optimal welfare by the welfare value in the test sample evaluated at the EWM optimal

policy obtained in the original sample. One-sided 1�↵ confidence intervals are constructed by applying the

standard normal approximation to t-ratio centered at the point estimate and standard errors estimated with

the artificial test sample.

Specifically, we construct test data {Y test
i , Zi, Xi}ni=1 by generating (Qtest

i , Dtest
i ) in the following pro-

cedure and substituting them into Y test
i = b · Qtest

i � a · 1{Dtest
i = 1}. For each z 2 {U, T, S}, we define

Iz := {i : Zi = z} as the set of experimental units assigned to arm z. We randomly partition Iz into 10

equal-sized folds I(1)z , . . . , I(10)z , and define I(�k)
z := Iz \ I(k)z , for k = 1, . . . , 10.

1. For each k = 1, . . . , 10, assign Dtest
i = 1 for i 2 I(k)T and Dtest

i = 0 for i 2 I(k)U , respectively. Regress

D on X using observations from I(�k)
S to obtain P̂ (�k)(D = 1|X,Z = S). For i 2 I(k)S , sample

Dtest
i ⇠ P̂ (�k)(D = 1|X = Xi, Z = S).

2. For each z 2 {T, U},

(a) For each k = 1, . . . , 10; estimate the conditional expectation function of electricity usage given

arm z and covariates X using observations in I(�k)
z to obtain Ê(�k)[Q|X,Z = z], and compute

residuals ✏̂i = Qi � Ê(�k)[Q|X = Xi, Z = z] for i 2 I(k)z . We then estimate the conditional

variance of the regression residuals E[✏2|X,Z = z] by regressing ✏̂2i on X using observations
8 For computational reasons, it is difficult to obtain a globally optimal tree of depth 6 that exactly maximizes the empirical

welfare. To alleviate this difficulty, we employ a heuristic two-step procedure to approximate the globally optimal depth-6 tree.
Specifically, we first optimize the parent tree of depth 3 that maximizes the empirical welfare in the entire sample; the resulting
parent tree divides the entire sample into 8 subsamples. Then, for each subsample, we search the child depth-3 tree that maximizes
the empirical welfare within the subsample. We finally graft the child depth-3 trees on the parent tree to construct the depth-6
tree. In the machine learning literature, this grafted-tree approach is common when constructing tree classifiers for computational
feasibility (see, e.g., Chapter 2 of Breiman et al. (2017) and Section 9.2 in Hastie et al. (2009)).

9The estimation and inference procedures proposed by Andrews et al. (2024) cannot be directly applied to decision tree based
policies because the number of candidate policies is infinite.

16



from I(�k)
z to get Ê(�k)[✏2|X,Z = z], and calculate �̂i =

q
Ê(�k)[✏2|X = Xi, Z = z] for

i 2 I(k)z .

(b) Sample {✏̃i}i2Iz independently from the empirical distribution of the standardized residuals

{✏̂i/�̂i}i2Iz , and compute ✏test
i = ✏̃i · �̂i for i 2 Iz .

(c) Construct Qtest
i = Ê(�k)[Q|X = Xi, Z = z] + ✏test

i for i 2 I(k)z and k = 1, . . . , 10.

3. For i 2 IS , we additionally include take-up status Di in the conditioning variables of the regressions.

(a) For each k = 1, . . . , 10; we obtain a regression estimate Ê(�k)[Q|X,D,Z = S] using obser-

vations of I(�k)
S , and compute residuals ✏̂i = Qi � Ê(�k)[Q|X = Xi, D = Di, Z = S] for

i 2 I(k)S . Estimate the residual conditional variance Ê(�k)[✏2|X,D,Z = S] using the observa-

tions i 2 I(�k)
S and let �̂i(Di) =

q
Ê(�k)[✏2|X = Xi, D = Di, Z = S] for i 2 I(k)S .

(b) For each d = 0, 1, units with Dtest
i = d sample ✏̃i independently from the empirical distribution

of {✏̂i/�̂i(Di) : Di = d, i 2 IS} and obtain ✏test
i = ✏̃i · �̂i(d).

(c) Construct Qtest
i = Ê(�k)[Q|X = Xi, D = Dtest

i , Z = S] + ✏test
i for i 2 I(k)S and k = 1, . . . , 10.

In this procedure, we estimate the conditional expectation functions of Di and Qi and the conditional vari-

ances of the residuals ✏̂i using random forests (Friedberg, Tibshirani, Athey, and Wager, 2021; Wager and

Athey, 2018).

With these test data, we obtain a point estimator for the maximized welfare gain �W(G⇤) = W(G⇤)�

WU relative to the welfare level WU attained by the uniformly untreated policy by

\�W(G⇤) ⌘ 1

n

nX

i=1

X

j2{U,T,S}

✓
Y test
i · 1{Zi = j}
P (Zi = j|Xi)

· 1{Xi 2 Ĝ⇤
j}
◆
� 1

n

nX

i=1

Y test
i · 1{Zi = U}
P (Zi = U |Xi)

, (11)

where Ĝ⇤ is an EWM policy defined in (5) constructed upon the original sample. We form one-sided confi-

dence intervals for the maximal welfare gain �W(G⇤) with coverage 1�↵ by
h

\�W(G⇤)� z1�↵ · �̂W/n1/2,1
i
,

where z1�↵ is the (1 � ↵)-th quantile of the standard normal distribution and �̂W is a standard deviation

estimator for the summands in equation (11) with Ĝ⇤ fixed.

Our approach consructs a test sample by resampling the residuals from cross-fitted regressions. In

contrast to sample splitting, we do not sacrifice the sample sizes for training and test samples. At the same
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time, we can mitigate the winner’s bias by performing cross fitting. We conduct an empirical Monte Carlo

study (EMCS) to validate the performance of this method in Section 4.4.

4.3 Results of the Optimal Policy Assignment

We estimate the optimal policy assignment that maximizes social welfare based on equation (5) in Sec-

tion 2. We compare five alternative policies: 1) assigning everyone to U , 2) assigning everyone to T , 3)

assigning everyone to S, 4) the selection-absent targeting G†, and 5) the selection-driven targeting G⇤.

In Table 2, we present the welfare performances of three benchmark policies without targeting (100% U ,

100% T , and 100% S) estimated by the sample averages in the original sample, and those of the suboptimal

and optimal targeting policies (G† and G⇤) estimated with the test sample method shown in the previous

section. For each policy, we estimate the ITT of the welfare gain in JPY per household per season. We

find that the 100% T policy induces a welfare gain of 120.7 per consumer, but the effect is not statistically

significant. The 100% S policy results in a welfare gain by 180.6 per consumer and is marginally significant

at a p-value of 0.107. These results suggest that without targeting, we cannot reject that the policy’s net

welfare gain can be zero.

Our policy intervention induces both cost (from the implementation cost) and benefit (from the energy

conservation), and therefore, the net welfare gain from a consumer can be positive, negative, or zero. This

implies that we could increase the policy performance by targeting policies, G† and G⇤. The results in

Table 2 suggest that the selection-absent targeting (G†) attains a welfare gain by 186.4 per consumer. Our

algorithm identifies that 52.4% of consumers should be treated, and 47.6% of them should be untreated.

Furthermore, we find that the selection-driven targeting (G⇤) results in a welfare gain of 477.0 per consumer.

With this policy, our algorithm identifies that 31.4% of consumers should be treated, 23.9% of them should

be untreated, and 44.7% of them should self-select.

In Table 3, we statistically compare the welfare gains between the alternative policies. The results imply

that the selection-driven targeting (G⇤) statistically and economically outperforms other policies. Compared

to the selection-absent targeting (G†), it generates an additional welfare gain by 290.6, which makes its

welfare gain more than double than the one obtained by the selection-absent targeting.

Table 4 presents the covariates distribution by the optimal policy assignment group G⇤ = (G⇤
U , G

⇤
T , G

⇤
S).

Columns 1, 2, and 3 show the mean and standard deviation by group, and Columns 4, 5, and 6 show the

difference between the means and its standard errors. For example, the means of household income indicate
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that higher-income households are more likely to be assigned to U rather than T or S. Similarly, the means

of self-efficacy in energy conservation suggest that households with lower efficacy in energy conservation

are more likely to be assigned to U .

4.4 Monte Carlo Simulation

As described in Section 4.2, we perform resampling of regression residuals with cross-fitting to address

the winner’s curse bias in the estimation of welfare. As we do not have an analytical claim on the bias and

coverage properties, we conduct an empirical Monte Carlo study (EMCS) in this section to present evidence

for valid performance.

To make the EMCS’ data generating process closely tailored to our experimental data, we use the ap-

proach developed by Athey, Imbens, Metzger, and Munro (2024). We begin by estimating the conditional

expectation of the observed electricity consumption Qi given the treatment take-up Di 2 {0, 1}, the exper-

imental arm Zi 2 {U, T, S}, all covariates Xi, and the conditional expectation of Di on Zi and Xi. We

apply random forest to each of these regressions. In addition, we apply the conditional Wasserstein-GAN

proposed by Athey, Imbens, Metzger, and Munro (2024) to learn the conditional distribution F̂X|Z of the co-

variates given the experimental arm and the conditional distribution F̂✏|D,Z,X of the electricity consumption

residuals ✏ = Q� Ê[Q|D,Z,X] given (D,Z,X).10

We then draw 500 Monte Carlo datasets {(Yi, Zi, Xi)}ni=1 of size n = 3870 by the following steps: (i)

randomly draw the experimental arm Zi to match the sample proportions in the original data; (ii) draw the

covariate Xi from F̂X|Zi
; (iii) draw the treatment take-up Di from a Bernoulli distribution with parameter

Ê[D|Zi, Xi]; (iv) draw the error term ✏i from the symmetrized distribution of ✏|Di, Zi, Xi; (v) set the

electricity consumption Qi by Qi = Ê[Q|Di, Zi, Xi] + ✏i and the welfare contribution Yi by Yi = b ·Qi �

a · 1{Di = 1}.

Using these Monte Carlo samples, we evaluate the bias and coverage of our estimator and confidence

intervals for the maximal welfare within the class of decision trees of depth 6.11 In Table 5, we compare three
10This conditional distribution F̂✏|D,Z,X is not guaranteed to have its mean zero, since the residuals constructed from the initial

nonparametric regression are not guaranteed to have conditional mean zero. To address this issue, we symmetrize its distribution
by drawing a residual from F̂✏|D,Z,X and multiply +1 or �1 randomly with an equal chance.

11Since the exact computation of the population optimal policy is difficult, we approximate it by
argmaxG=(GU ,GT ,GS)

P10,000
i=1

P
z2{U,T,S} Ê[Y |Z = z,X

policy
i ] · 1{Xpolicy

i 2 Gz}, where the maximization of G is over the
class of tree partitions of depth 6, Xpolicy

i is the covariates that are used for targeting, and Ê[Y |Z = z,X
policy], z 2 {U, T, S} is

the regression estimate of Ê[Y |Z = z,Xi] specified for EMCS data generating process on X
policy
i . We then draw covariate data

{Xi} of size 1,000,000, and evaluate the welfare at the optimal policy based on Ê[Y |Z = z,Xi], z 2 {U, T, S}.
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methods in terms of the bias and standard errors of the estimator and the coverage of one-sided confidence

intervals. The first method is a naive approach that regards the in-sample optimized empirical welfare

contrast as an estimator for the population maximal welfare gain and forming CIs under the assumption of

asymptotic normality of the point estimate. The second method is our estimator \�W(G⇤) and the associated

confidence intervals based on resampling of the cross-fitted residuals. The third method is sample splitting,

in which we randomly split the sample into training and test subsamples of equal size. We use the training

subsample to estimate an optimal policy and the test subsample to estimate and infer the welfare gain.

Our main finding is that the resampling with cross-fitting method outperforms the other two methods in

terms of the bias correction, coverage, and precision. The naive method is subject to severe upward bias and

under-coverage due to winner’s curse bias. The sample splitting method meets the desired coverage while

the point estimates are biased downward since insufficient training sample size forces limited learning of

the optimal policy. It also sacrifices the precision of the estimator. The resampling with cross-fitting method

provides smaller bias, better coverage, and precision.

5 Using the LATE Framework to Uncover the Mechanism

As presented in Section 2.2, an advantage of our research design is that we can identify both of the LATE

for takers (E[YT � YU |DS = 1]) and the LATE for non-takers (E[YT � YU |DS = 0]). In this section, we

demonstrate that these two LATEs can be used to examine the mechanism in the selection-driven targeting.

As shown in equation (6) in Section 2.2, we can use the conventional LATE framework by Imbens and

Angrist (1994) to demonstrate that E [YT � YU |DS = 1] = E[Y |Z=S]�E[Y |Z=U ]
P (D=1|Z=S) , where Z = {S,U} is

randomly assigned in our RCT, Z = S is the selection group, Z = U is the untreated group, and D is the

observed treatment take-up for those who were assigned to Z = S. The numerator of the right-hand side

of the equation is the difference in the ITTs between groups S and U , and the denominator is the take-up

rate in groups S. Therefore, the sample analogue of this equation can be estimated from our experimental

data.12 A unique feature of our research design is that we have a randomly-assigned compulsory treatment

group (Z = T ) along with groups Z = {S,U}. As presented in equation (6) in Section 2.2, we can use two

groups Z = {S, T} to estimate the LATE for non-takers by E [YT � YU |DS = 0] = E[Y |Z=T ]�E[Y |Z=S]
P (D=0|Z=S) .

12Equation (6) shows that the LATE for takers is equivalent to the LATE for compliers when we consider two groups with a
binary instrument Z = {U, S}. This implies that we can use the conventional IV estimation to estimate equation (6) under the
regular assumptions for identifying the LATE. In particular, a key assumption is the exclusion restriction in equation (2.2).
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The LATEs for takers and non-takers can be estimated conditional on X because the randomization of

Z = (U, T, S) holds given X . This implies that we can estimate these LATEs by customer types based on

X . Consider the optimal assignment rule with the selection-driven targeting policy G⇤ = (G⇤
U , G

⇤
T , G

⇤
S).

This policy divides customers into three groups based on their observables: those who should be untreated

(X 2 G⇤
U ), those who should be treated (X 2 G⇤

T ), and those who should self-select (X 2 G⇤
S).

In Figure 2, we estimate equations (6) and (7) for these three groups, G⇤
U , G⇤

T , and G⇤
S . For those who

are assigned to the selection group (G⇤
S), the LATE for takers is 2203 and the LATE for non-takers is �742.

This implies that self-selection is a useful tool for this group to let customers sort into the treatment choice

that is in line with the planner’s objective. By contrast, if we allow self-selection for customers in G⇤
U , it

is likely to decrease welfare because the LATE for takers is �738. Similarly, if we allow self-selection in

G⇤
T , it is likely to lower welfare because self-selection would make the non-takers untreated even though

their LATE is positive and large at 600. Therefore, the LATE for takers and non-takers presented in Figure

2 highlights how our algorithm chooses who should get treated, untreated, and choose to get treated by

themselves.13

6 Conclusion

We develop an optimal policy assignment rule that systematically integrates two distinctive approaches

commonly used in the literature—targeting by “observables” and targeting through “self-selection.” Our

method identifies those who should be treated, should be untreated, and should self-select into a treatment

to maximize a policy’s social welfare gain. We show that targeting that leverages information on both

observables and self-selection outperforms conventional targeting. Finally, we use the LATE framework

(Imbens and Angrist, 1994) to uncover the mechanism in our approach. We introduce new estimators, the

LATEs for takers and non-takers, to demonstrate how our method identifies whose self-selection is useful

and harmful for the planner to maximize social welfare.
13To empirically assess Assumption 2.2, we perform the test developed by Kitagawa (2015) for the null hypothesis of the

inequalities (8). We find that the p-value of this test is 1.000 and insensitive to various choices of tuning parameters, which provides
supporting evidence for Assumption 2.2 with our data.
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Figure 1: Example of Optimal Policy Assignment G⇤

X1

X2

F A

E B

D C

G⇤
T

G⇤
U

G⇤
S

{x | ATE(x) � 0}
{x | LATET (x) � 0}
{x | LATENT (x) � 0}

Notes: This figure illustrates how an optimal policy rule G
⇤ described in equation (4) partitions the two-dimensional charac-

teristic space X . Let ATE(x) := E[WT �WU |x], LATET (x) := E[WT �WU |DS = 1, x] (i.e., the LATE for takers), and
LATENT (x) := E[WT �WU |DS = 0, x] (i.e., the LATE for non-takers). Among the six subspaces from A to F, ATE(x)
is non-negative only in A, B, and C; LATET (x) is non-negative only in B, C, and D; LATENT (x) is non-negative only in
A, B, and F. Therefore, according to the optimal policy characterization (4), G⇤

T = A [B, G⇤
U = E [ F , and G

⇤
S = C [D.

Figure 2: Mechanism Behind the Algorithm: The LATEs for Takers and Non-Takers
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Notes: This figure shows the estimation results in Section 5. For each of the three groups in the optimal assignment (x 2
G

⇤
U , x 2 G

⇤
T , x 2 G

⇤
S), we estimate the LATE for takers (E[YT � YU |DS = 1]) and the LATE for non-takers (E[YT �

YU |DS = 0]) to investigate the mechanism in the optimal assignment. We show the point estimates with the 95% confidence
intervals. For example, for those who are assigned to the selection group (G⇤

S), the LATE for takers is 2203, and the LATE
for non-takers is �742. This implies that self-selection is a useful tool for this group to let customers sort into the treatment
choice that is in line with the planner’s objective. The point estimates and confidence intervals are calculated with test data
constructed by the method delineated in Section 4.2. The monetary unit is given as 1 ¢ ⇡ 1 JPY in the summer of 2020.
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Table 1: Summary Statistics and Balance Check

Sample mean by group Difference in sample means
[standard deviation] (standard error)

Untreated Treated Selection U vs. T U vs. S T vs. S
(Z = U ) (Z = T ) (Z = S)

Peak hour usage (Wh) 192 190 189 2.57 2.87 0.29
[141] [138] [134] (5.03) (5.91) (5.93)

Pre-peak hour usage (Wh) 179 176 180 3.79 �1.11 �4.89
[137] [135] [142] (4.92) (6.07) (6.11)

Post-peak hour usage (Wh) 299 297 293 1.94 6.02 4.08
[175] [171] [174] (6.26) (7.54) (7.56)

Number of people at home 2.48 2.44 2.47 0.04 0.01 �0.03
[1.24] [1.24] [1.27] (0.04) (0.05) (0.06)

Self efficacy in energy 3.45 3.46 3.49 �0.01 �0.04 �0.02
conservation (1-5 scale) [0.85] [0.85] [0.83] (0.03) (0.04) (0.04)

Household income 645 613 637 31.69 8.45 �23.23
(JPY 10,000) [399] [362] [391] (13.75) (17.06) (16.67)

All electric 0.32 0.31 0.30 0.01 0.02 0.00
[0.47] [0.46] [0.46] (0.02) (0.02) (0.02)

Number of air conditioners 3.14 3.11 3.08 0.03 0.05 0.02
[1.69] [1.71] [1.67] (0.06) (0.07) (0.07)

Number of fans 2.80 2.73 2.77 0.07 0.04 �0.04
[1.63] [1.63] [1.56] (0.06) (0.07) (0.07)

Number of household members 2.76 2.73 2.75 0.04 0.01 �0.03
[1.27] [1.27] [1.28] (0.05) (0.06) (0.06)

Total living area (m2) 107 106 103 1.78 3.87 2.09
[49] [50] [46] (1.78) (2.03) (2.07)

Notes: Columns 1-3 present the sample mean and standard deviations in blackets for the pre-experiment consumption data and
demographic variables by randomly-assigned group: untreated (Z = U ), treated (Z = T ), and selection (Z = S). Columns 4-6
show the difference in the sample means with the standard error of the difference in parentheses. The number of households are
1,577 (U ), 1,486 (T ), and 807 (S). The monetary unit is given as 1 ¢ ⇡1 JPY in the summer of 2020.
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Table 2: Welfare Gains from Each Policy

Policy Welfare gain Share of customers in each arm Share of

GU GT GS treated customers

100% untreated 0.0 100.0% 0.0% 0.0% 0.0%
(——)

100% treated 120.7 0.0% 100.0% 0.0% 100.0%
(98.8)

100% self-selection 180.6 0.0% 0.0% 100.0% 37.2%
(112.1)

Selection-absent targeting (G†) 186.4 47.6% 52.4% 0.0% 52.4%
(66.9)

Selection-driven targeting (G⇤) 477.0 23.9% 31.4% 44.7% 48.8%
(87.2)

Notes: This table summarizes characteristics of three benchmark policies (100% untreated, 100% treated, and 100% self-selection),
selection-absent targeting (G†), and selection-driven targeting (G⇤). The column titled “Welfare Gain” shows the estimated ITT of
welfare gain in JPY per household per season, with its standard error in parentheses. The monetary unit is given as 1 ¢ ⇡ 1 JPY in
the summer of 2020.

Table 3: Comparisons of Alternative Policies

Difference in welfare gains p-value

100% self-selection vs. 100% treated 59.9 0.293
(110.0)

Selection-absent targeting (G†) vs. 100% treated 65.7 0.282
(113.9)

Selection-absent targeting (G†) vs. 100% self-selection 5.8 0.482
(126.9)

Selection-driven targeting (G⇤) vs. 100% treated 356.4 0.002
(125.7)

Selection-driven targeting (G⇤) vs. 100% self-selection 296.5 0.013
(133.6)

Selection-driven targeting (G⇤) vs. Selection-absent targeting (G†) 290.6 0.000
(78.9)

Notes: This table compares welfare gains from each policy. For each row, the column “Difference in Welfare Gains” shows
the estimated welfare gain of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY
per household per season, with its standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis:
H0 : WL  WR. The monetary unit is given as 1 ¢ ⇡ 1 JPY in the summer of 2020.
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Table 4: Covariate Distribution by Optimally Assigned Group G⇤

Sample mean by group Difference in sample means
[standard deviation] (standard error)

G⇤
U G⇤

T G⇤
S G⇤

U vs. G⇤
T G⇤

U vs. G⇤
S G⇤

T vs. G⇤
S

Peak hour usage (Wh) 203 180 191 23.03 11.98 �11.05
[146] [136] [135] (6.18) (5.79) (5.08)

Pre-peak hour usage (Wh) 198 167 175 30.56 23.08 �7.48
[150] [133] [132] (6.23) (5.86) (4.97)

Post-peak hour usage (Wh) 329 255 310 73.22 18.82 �54.40
[176] [176] [164] (7.67) (7.00) (6.41)

Number of people at home 2.87 2.27 2.38 0.60 0.48 �0.11
[1.34] [1.32] [1.08] (0.06) (0.05) (0.05)

Self efficacy in energy 3.30 3.49 3.53 �0.19 �0.23 �0.04
conservation (1-5 scale) [1.02] [0.82] [0.75] (0.04) (0.04) (0.03)

Household income 787 597 572 190.12 215.11 25.00
(JPY 10,000) [433] [397] [318] (18.23) (16.15) (13.73)

All electric 0.36 0.25 0.33 0.11 0.03 �0.08
[0.48] [0.43] [0.47] (0.02) (0.02) (0.02)

Number of air conditioners 3.41 2.82 3.16 0.58 0.24 �0.34
[1.72] [1.66] [1.67] (0.07) (0.07) (0.06)

Number of fans 2.99 2.58 2.78 0.41 0.20 �0.21
[1.75] [1.57] [1.55] (0.07) (0.07) (0.06)

Number of household members 3.17 2.54 2.67 0.63 0.50 �0.13
[1.31] [1.36] [1.14] (0.06) (0.05) (0.05)

Total living area (m2) 115 97 107 18.25 8.68 �9.57
[48] [49] [47] (2.11) (1.94) (1.81)

Notes: This table shows the covariate distribution by group based on the optimal policy assignment G⇤.

Table 5: Monte Carlo Simulation Results

Naive Resampling with cross-fitting Sample splitting

Bias S.E. Coverage Bias S.E. Coverage Bias S.E. Coverage

S vs. T 1.0 74.8 0.94 1.0 74.8 0.94 3.6 105.3 0.94
G† vs. T 459.3 41.3 0.00 29.1 49.9 0.97 �77.8 63.7 1.00
G† vs. S 458.3 67.6 0.00 28.1 80.1 0.92 �81.4 103.7 1.00
G⇤ vs. T 573.1 51.2 0.00 �8.0 73.1 0.98 �126.2 82.9 1.00
G⇤ vs. S 572.1 50.2 0.00 �9.0 70.2 0.99 �129.8 85.5 1.00
G⇤ vs. G† 113.8 42.9 0.25 �37.0 60.9 0.98 �48.4 82.5 0.98

Notes: T is 100% treated, S is 100% self-selection, G† is the selection-absent targeting, and G
⇤ is the selection-driven targeting.

In sample splitting, 50% of the sample is used for training. In resampling with cross-fitting, we perform inference based on test
samples constructed by resampled residuals with cross-fitting. See the method shown in Section 4.2.
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