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1 Introduction

A fundamental challenge of air pollution is its transboundary nature. Air pollution from a country

is not confined to its borders and negatively affect neighboring nations. This also implies that a

country’s environmental policy may yield international spillover benefits to other countries. Inter-

national organizations such as the World Bank recognize air pollution’s international spillovers as

a first-order problem in economic development (World Bank, 2022). However, the economics liter-

ature has generally not accounted for this spillover effect when evaluating the costs of air pollution

and the benefits of environmental regulation. For example, the benefits of US environmental reg-

ulations are often estimated solely based on domestic impacts. Similarly, while recent ambitious

environmental policies in China and India likely have substantial benefits to the environmental

quality in neighboring countries, these effects are rarely considered in policy evaluations.

In this study, we examine the international spillover effects of air pollution and the extent to

which conventional economic analysis understates the costs of air pollution and the benefits of

environmental regulations. Our framework integrates recent advances in atmospheric science into

econometric estimation. First, we obtain data on hourly particle trajectories from China to South

Korea using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT).1 Sec-

ond, combining these particle trajectory data with hourly PM2.5 data in China and South Korea, we

estimate how transboundary PM2.5 from China affects PM2.5 in South Korea.2 Finally, we connect

these data with the universe of individual-level mortality data and emergency department visit data

in South Korea to quantify the mortality and health impacts of transboundary air pollution.

We begin by presenting descriptive and visual evidence that transboundary air pollution from

China plays a significant role in PM2.5 levels in South Korea. In East Asia, the fall and winter

seasons are dominated by prevailing west winds, called “the westerlies,” which bring consistent

airflow from China to South Korea. During these seasons, we observe substantially higher PM2.5

levels in the northwest region of South Korea compared to the southeast region. In contrast, these

1Although outside the context of international spillovers, a growing number of recent economics studies use
HYSPLIT to analyze air pollution (Burke et al., 2023; Fowlie, Rubin and Wright, 2021).

2PM2.5 refers to fine particles in the air that are two and one half microns or less in width.
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regions have similar PM2.5 levels in spring and summer. We use HYSPLIT to quantitatively con-

firm this relationship. Northwestern cities in South Korea—such as Incheon and Seoul—have

trajectories originating in China more than half of the time during our sample period. By contrast,

cities in the southeast, such as Busan, experience trajectories from China at a lower frequency.

We statistically estimate this relationship by regressing the hourly PM2.5 levels in South Korean

cities on the levels of hourly transboundary PM2.5. We find that, on average, a 1 µg/m3 increase

in transboundary PM2.5 from China results in a 0.137 µg/m3 increase in PM2.5 in South Korean

cities. This estimate is robust and stable to the choice of fixed effects and control variables.

We then use the universe of individual-level mortality data in South Korea to estimate the

mortality impact of transboundary air pollution. Our reduced-form estimates indicate that a 1

µg/m3 increase in transboundary PM2.5 from China in the past 70 days results in an increase in

hourly mortality in South Korea of 3.60 per billion people (or, an increase in annual mortality of

31.6 per million people). This effect implies a 0.6% increase in mortality with respect to a 1 µg/m3

increase in transboundary PM2.5, relative to the baseline mortality rate for this population.

In addition to estimating the overall population’s mortality impact, we also estimate the mor-

tality effects on specific groups: the elderly (ages 65 and above), infants (ages below 1), and those

who died from respiratory/cardiovascular diseases. The marginal effect on mortality is higher for

infants (a 2.2% increase in mortality with respect to a 1 µg/m3 increase in transboundary PM2.5 in

the past 70 days) and those who succumbed to respiratory/cardiovascular diseases (a 1.1% increase

in mortality). Our analysis also suggests that both instantaneous and lagged transboundary PM2.5

levels affect mortality, although the lagged effects diminish after 70 days.

Using transboundary PM2.5 levels from China as an instrumental variable (IV) for local PM2.5

levels in South Korea, we also identify the effect of PM2.5 on mortality. Our IV estimates indicate

that a 1 µg/m3 increase in PM2.5 in the past 70 days results in an increase in hourly mortality

by 9.26 per billion people for the overall population. This effect implies an increase in annual

mortality of 81.1 per million people and a 1.5% increase in mortality relative to the mean. The

marginal effect as a percentage increase in mortality is greater for infants (a 5.8% increase) and
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those with respiratory and cardiovascular diseases as the cause of death (a 2.9% increase).

Besides the mortality impact, air pollution may also increase morbidity (Barwick et al., 2018).

In particular, short- and medium-run increases in air pollution are believed to affect acute symp-

toms of asthma and rhinitis (Eguiluz-Gracia et al., 2020; Kuiper et al., 2021). Thus, an increase in

transboundary PM2.5 from China to South Korea may increase such symptoms in the South Korean

population. To investigate this issue, we collected data on the universe of emergency department

(ED) visits in South Korea between 2013 and 2017 for patients who received medical treatment

in the ED for atopic dermatitis, rhinitis, or asthma. We find that increases in transboundary PM2.5

result in a greater number of ED visits for asthma and rhinitis but not for atopic dermatitis. The

reduced-form results imply that a 1 µg/m3 increase in transboundary PM2.5 from China to South

Korea results in an increase in daily ED visits by 45.2 and 502.7 per billion people for asthma and

rhinitis, respectively, which are 0.5% and 3.6% increases relative to their means.

Our results suggest that transboundary air pollution from China has substantial impacts on

mortality and morbidity in South Korea. This finding implies that a country’s environmental reg-

ulations may produce cross-country spillover benefits. To highlight this point, we examine an

implication of a prominent environmental policy recently implemented in China known as “the

war on pollution” (Greenstone, He, Li and Zou, 2021). Since 2014, the Chinese government has

introduced a nationwide air pollution reduction program. Our data suggest that PM2.5 levels in

China had a long-run decline during our sample period, which resulted in a decline in transbound-

ary PM2.5 levels—the average level of transboundary PM2.5 from China to South Korea declined

by 9.63 µg/m3 in 2019 compared to 2015.

We quantify the spillover benefits of the Chinese environmental regulation for South Korea

using our empirical findings and the value of a statistical life from the literature. We find that a 9.63

µg/m3 reduction in transboundary PM2.5 levels resulted in a spillover benefit of $2.80 billion per

year for South Korea.3 This result suggests that the international spillover benefit of environmental

regulation is economically substantial.

3The value is in 2019 US dollars. See footnote 22 for more details.
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Finally, we investigate China’s potential strategic pollution reductions and their implications

for Coasian bargaining. Several previous studies on water pollution find that a county may exploit

international spillovers of water pollution and strategically allocate the flow of pollution in trans-

boundary rivers (Sigman, 2002). To the best of our knowledge, the possibility of such strategic

behavior has not yet been investigated for air pollution. We find suggestive empirical evidence

of China’s strategic reductions in air pollution. During our sample period, the reduction in PM2.5

levels was 9.29 µg/m3 in Chinese cities where most air pollution dispersed beyond the national

border. This is lower than the nationwide average reduction (14.07 µg/m3) and much lower than

the reduction in Chinese cities where most air pollution remained within China (18.32 µg/m3).

This potential strategic pollution reduction implies that the international spillover benefits we find

can be lower than those in a counterfactual scenario absent of this potential strategic decision. We

show that the additional international spillover benefit of the war on pollution for South Korea

could have been up to $1.29 billion per year.

Our study builds on four strands of the literature. First, we provide a new framework that inte-

grates recent advances in atmospheric science into econometric estimation with microdata on mor-

tality and health. Previous economic studies use indirect measures of transboundary air pollution

such as interactions between wind direction and air pollution or specific events including yellow

dust and wildfires (Sheldon and Sankaran, 2017; Jia and Ku, 2019; Cheung, He and Pan, 2020).

This is because it has been difficult to obtain direct measurements of transboundary air pollution.

For example, Jia and Ku (2019) use an innovative research design based on the incidence of Asian

dust to estimate the impact of air pollution spillover from China to South Korea. The authors note

that “tracing winds from the vast area of China to a specific district within South Korea is difficult

and such data do not exist.” For this reason, the study focuses on district-by-month-level analysis.

To address this challenge, we use HYSPLIT and obtain hourly transboundary PM2.5 data for every

city in South Korea. This approach makes it possible to link city-by-hour-level transboundary air

pollution data with the universe of mortality and ED visit data in South Korea.

Second, our study expands on the findings of recent studies that use detailed data on air pol-
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lution, mortality, and health to estimate the mortality and health impacts of air pollution. For ex-

ample, Deryugina et al. (2019) estimate the mortality effect of PM2.5 on the elderly in the United

States from 1999 to 2013 using Medicare data with wind direction as an instrumental variable.

Both these papers and our study connect microdata on mortality or health outcomes with detailed

data on air pollution. Our study differs from these previous studies in two key respects. First, our

research focuses on the international spillover effects. Second, we use data on the direct measures

of particle trajectories based on HYSPLIT rather than wind direction to trace pollution trajectories.

Third, we provide new evidence on the international spillovers of environmental externalities.

In the economics literature, the primary focus of this topic has been water pollution in trans-

boundary rivers (Sigman, 2002). Our findings suggest that this issue is important in the design of

international environmental polices, not only for water pollution but also for air pollution.4

Finally, our framework benefits from recent advancements in atmospheric science. Many recent

studies in atmospheric science use HYSPLIT or similar models to obtain particle trajectories (Lee

et al., 2013; Oh et al., 2015; Lee et al., 2017a; Bhardwaj et al., 2019; Han et al., 2021). These

studies, however, usually do not estimate the impacts of transboundary air pollution on mortality or

other economic and health outcomes. We contribute to this literature by connecting transboundary

air pollution data from HYSPLIT with microdata on mortality and health to shed light on the

economic implications of international air pollution spillovers.

2 Data and Descriptive Evidence

2.1 PM2.5 in South Korea and China

We obtain hourly PM2.5 concentrations in Chinese cities from Berkeley Earth’s air pollution data.

Berkeley Earth collects hourly PM2.5 levels at the city level that are regionally interpolated with

4Our study is among recent papers that investigate this question for air pollution. For example, even though
their focus is domestic air pollution spillovers—as opposed to international spillovers—Monogan III et al. (2017) and
Morehouse and Rubin (2021) find evidence for strategic siting of polluting facilities within the United States.
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real-time observations from ground-level monitors. We present monitor locations in Figure A.3.5

We collect hourly PM2.5 concentrations in South Korean cities from the Korea Environment

Corporation (KECO). The data contain hourly concentrations of pollutants such as PM2.5, PM10,

SO2, CO, O3, and NO2. The National Institute of Environmental Research in South Korea collects

data from 153 monitors, with records dating back to 2001. Although PM10 data have been collected

since 2001, collection of PM2.5 data only began in 2015 as part of the Clean Air Conservation Act

(passed in October 2013). We show monitor locations in Figure A.4.6

Figure 1 provides suggestive evidence that transboundary air pollution from China may play

a significant role in the PM2.5 levels in South Korea. It shows the time-series variation in PM2.5

levels in China and South Korea between January 2015 and December 2020. We split South Korea

into two regions: northwest (i.e., regions closer to China) and southeast (i.e., regions relatively far

from China) to examine how PM2.5 levels in China correlate differently with PM2.5 levels in the

northwest and southeast regions in South Korea.

The figure suggests that PM2.5 levels in China has persistently declined during our sample

period. Many previous studies find that a large part of this reduction can be attributed to aggressive

environmental regulation implemented in China, known as “the war on pollution” (Greenstone,

He, Li and Zou, 2021). Our monitor-level data suggest that the reduction in PM2.5 levels from

2015 to 2019 on average was 14.07 µg/m3 (unweighted) and 14.80 µg/m3 (population-weighted).

In addition, the level of PM2.5 in China is almost always higher than that in South Korea and,

in general, higher in fall and winter than in summer and spring. This is because heating in fall

and winter is a major source of air pollution in China (Ito and Zhang, 2020). In East Asia, fall

and winter are characterized by prevailing west winds, called “the westerlies.” In Figure A.2, we

use wind data to show that this is in fact the case—in South Korea, the wind blows from west

to east over 70% of the time in fall and winter. The wind speed is also higher in fall and winter

than in spring and summer (Figure A.2). The combination of higher PM2.5 levels in China and

the seasonal westerlies could explain why systematic deviations in PM2.5 levels exist between the

5The air pollution data are available at the Berkeley Earth website: http://berkeleyearth.org.
6Data are available at AirKorea, a webpage operated by KECO: https://www.airkorea.or.kr/web.
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northwest and the southeast regions of South Korea only in fall and winter. The PM2.5 levels are

similar in the northwest and the southeast regions during spring and summer. By contrast, the

northwest region has substantially higher PM2.5 levels than the southeast region in fall and winter,

when the PM2.5 levels in China tend to be high and the area is prone to persistent westerlies.

While the visual analysis based on raw data in Figure 1 is informative, it neither controls for

potential confounding factors nor provides direct information on transboundary air pollution. In

the next section, we describe how we obtain such direct information and how we use our research

design to control for potential confounding factors.

2.2 Transboundary Air Pollution from China to South Korea

Researchers in atmospheric science have recently developed several ways to obtain direct measures

of transboundary air pollution. One of the state-of-the art methods is the Hybrid Single-Particle

Lagrangian Integrated Trajectory model (HYSPLIT) developed by the National Oceanic and At-

mospheric Administration (NOAA) Air Resources Laboratory. HYSPLIT has been used in a va-

riety of applications to describe atmospheric transport, dispersion, and deposition of pollutants. It

can provide particle trajectories to determine the distance and locations to which particles travel.7

With meteorological data, HYSPLIT provides data on forward or backward pollution trajecto-

ries.8 The forward trajectories trace the movement of particles from a given point and time, while

the backward trajectories trace the movement of particles backward in time from the arrival lo-

cation. These two trajectories are useful for answering different sets of questions. For example,

forward trajectories can be used to analyze the effect of emissions from a point source such as a

factory or a volcano. On the other hand, backward trajectories help determine possible sources that

7Among atmospheric transport models, HYSPLIT provides tractable and reliable information on long-distance
particle dispersion. We use HYSPLIT because our focus is the long-run dispersion of PM2.5. An important limita-
tion of our approach is that HYSPLIT does not allow us to study the chemical reactions of pollutants. One example
of alternative models is AERMOD, which is a steady-state Gaussian-plume dispersion that can incorporate chemical
reactions. However, at this time, it is only designed for measuring short-range particle dispersion up to 50 km. Incor-
porating chemical reactions in long-distance dispersion is an ongoing frontier research topic in atmospheric science,
and we believe it is an important area of further research.

8For meteorological data, we use the NCEP/NCAR reanalysis data. Further details are available in Appendix A.
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might contribute to high levels of pollution in one area. We use backward trajectories in most of

our analysis and forward trajectories in Section 4. We provide a detailed description of HYSPLIT

and its application to our analysis in Appendix A.

It is worth clarifying that HYSPLIT does not use any air pollution information when obtaining

trajectories, and therefore, particle trajectories obtained by HYSPLIT are not endogenous to local

pollution. HYSPLIT uses meteorological data to identify the trajectory of a particle from one

location to another without using air pollution data.

In Figure 2, we show a few HYSPLIT backward trajectories using Seoul and particular three

hours as examples. For instance, the red line shows the backward trajectory of a particle that arrived

in Seoul at 8 pm on June 15, 2015. HYSPLIT provides data on the particle trajectory’s longitude,

latitude, and altitude every hour. For each city in South Korea, we obtain backward trajectories for

every hour in our sample period. Each hourly backward trajectory starts from the destination city’s

centroid and traces the particle trajectory backward. With this process, we obtain 6.57 million

backward trajectories in total (24 hourly trajectories ⇥ 365 days ⇥ 5 years ⇥ 228 cities in South

Korea). While this is a computationally-intensive data collection, parallel computing allows us to

obtain millions of trajectories in about a week.

In Figure 3, we present how often South Korean cities have backward trajectories originating

from China, by calculating the percentage of hours for which a city had trajectories originating

from China in our sample period.9 The denominator is the total number of hours from January 1,

2015 to December 31, 2019, and the numerator is the total number of hours in which the backward

trajectories came from China. The figure indicates substantial heterogeneity among South Korean

cities. Cities in the northwest, such as Incheon and Seoul, have trajectories coming from China

more than half of the time in our sample period. By contrast, cities in the southeast, such as Busan,

less likely to have trajectories from China.

In Figure 4, we show how often Chinese cities have trajectories that arrive in any South Korean

city. For each city in China, we calculate the ratio of particles traveling to South Korea—the

9We consider that a backward trajectory comes from China if the trajectory is from the interior of China’s borders
at a height below 1 km.
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denominator is the total number of hours from January 1, 2015 to December 31, 2019, and the

numerator is the total number of hours in which a trajectory went from the city in China to any

South Korean city. We find higher fractions of trajectories coming from the northeastern part of

mainland China, particularly Liaoning province owing to the persistent west-blowig wind in this

region (the westerlies) and the proximity to South Korea. This figure illustrates that transboundary

air pollution from these regions is more likely to affect South Korean cities.

We also investigate how long each trajectory takes to travel from China to South Korea. For

each trajectory from China to South Korea, we observe how many hours it took to move from the

last grid point in China to the city in South Korea. We present the distribution of this duration in

Figure A.5. The median is 38 hours, and there is substantial variation in the duration (the 25th and

75th percentiles are 22 and 69 hours respectively). This substantial heterogeneity suggests that it is

important to obtain direct information on each trajectory from HYSPLIT and that commonly-used

indirect approaches (e.g. using average air pollution in China one or two days ago as a proxy for

transboundary air pollution today) may not be able to accurately capture real-time transboundary

air pollution.10

We construct a variable TransboundaryPMct based on the hourly backward trajectory data

and PM2.5 data in China. For each hour t in city c in South Korea, we observe whether the

backward trajectory comes from China. If the trajectory does not come from China, we define

TransboundaryPMct as zero as the focus of our study is transboundary air pollution from China.

When the trajectory comes from China, we collect its origin’s location and time. By merging this

information with city-level data on hourly PM2.5 in China, we can obtain PM2.5 levels at the ori-

gin of the trajectory. We set this value to be TransboundaryPMct. For example, suppose that a

pollution trajectory travels for 24 hours from Beijing to Seoul and arrives at hour t. In that case,

TransboundaryPMct equals the PM2.5 level in Beijing in hour t� 24.11

10This distribution also suggests that most trajectories from China to South Korea travel less than 100 hours. For
this reason, we use 200 hours as the maximum run-time to obtain relevant trajectories for our analysis.

11For trajectories that passed through multiple cities in China, we consider two approaches to calculate
TransboundaryPMct. The first approach is to incorporate air pollution from every relevant Chinese city by calcu-
lating the average of PM2.5 levels from all Chinese cities that the trajectory passed through. The second approach is
to use PM2.5 levels in the last Chinese city that the trajectory passed through before arriving in South Korea. We find
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The particle trajectory data by itself does not uncover how transboundary air pollution affects

local air pollution in South Korea. Our idea is that we can empirically estimate this relationship by

regressing local hourly PM2.5 levels in South Korean cities c in hour t on TransboundaryPMct. In

section 3.1, we find a strong systematic relationship between these two variables and demonstrate

that this relationship is robust to the inclusions of various fixed effects and control variables.12

2.3 Mortality in South Korea

We collect mortality data from the MicroData Integrated Service (MDIS), which is operated by

Statistics Korea, South Korean government’s national statistical agency. The microdata include the

universe of individual-level mortality information from January 1997 to December 2019, including

each individual’s date and hour of death, age, sex, city of death, and cause of death.13

2.4 Emergency Department Visits in South Korea

We obtain data on emergency department (ED) visits in South Korea between 2013 and 2017

for patients admitted due to atopic dermatitis, rhinitis, or asthma. The National Health Insurance

Service (NHIS) in South Korea provides data on all ED admissions at the district and daily level.

The data are representative of the whole South Korean population, as nearly all eligible citizens

are beneficiaries of this national insurance policy.

that these two approaches produce virtually identical results. We use the first approach for our main results and report
the results with the second approach in the appendix, Tables A.3 through A.6.

12In the HYSPLIT, we need to specify the starting height of the backward trajectories. We follow the literature in
atmospheric science to use 500 meters for our main results and examine their robustness in Table A.10. The results in
Table A.10 suggest that they are robust to heights over 500 meters and that the Kleibergen-Paap rk Wald F-statistic is
highest with 500 meters. Similarly, we need to specify the heights of the trajectories in China (the height at the origin
of the backward trajectory) to determine the origin of the trajectory. Studies in atmospheric science use a height of
1,000 meters, and we find that indeed this height at the origin produces the highest Kleibergen-Paap rk Wald F-statistic
in our first stage regression.

13Data are available at MDIS: https://mdis.kostat.go.kr.
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2.5 Other Data and Summary Statisics

We obtain monitor-level hourly South Korean meteorological data from January 2001 to Decem-

ber 2019from the Korea Meteorological Administration. This dataset includes wind speed and

direction, temperature, and precipitation levels. We show the monitor locations in Figure A.4.

To create maps, we obtain shapefiles for China from the United Nations Office for the Co-

ordination of Humanitarian Affairs and OSM-Boundaries, and a shapefile for South Korea from

Geoservice Inc., a research institute that provides technology on geographic information systems

(GIS), three-dimensional visualization, and deep learning.14

Table 1 provides summary statistics. The average PM2.5 level in our sample period is 45.05

µg/m3 in China and 24.99 µg/m3 in South Korea. The mortality data suggest that approximately

a quarter of mortality in South Korea is due to respiratory or cardiovascular illnesses.

3 Empirical Analysis and Results

In this section, we begin by estimating the first-stage regression in section 3.1 to estimate the

impact of transboundary air pollution on local air pollution in South Korea. We then estimate the

reduced-form in section 3.2 to identify the impact of transboundary air pollution on mortality in

South Korea. Finally, in section 3.3, we run the instrumental variable (IV) estimation to estimate

the effect of local air pollution on mortality in South Korea.

3.1 First-stage Regression

We use PMct to denote hourly PM2.5 levels in South Korean city c in hour t and TransboundaryPMct

to denote the level of hourly transboundary PM2.5 that reached city c in hour t. In the first-stage

regression, we estimate the impacts of transboundary air pollution from China on local air pollution

14These shapefiles are available online at https://data.humdata.org/dataset/china-administrative-boundaries. and
http://www.gisdeveloper.co.kr.
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in South Korea by running the ordinary least squares (OLS) regression for the following equation:

PMct = ↵TransboundaryPMct +Xct� + uct, (1)

where Xct is a vector of control variables for city c and hour t, and uct is the error term. We

include a set of control variables to control for potential confounding factors such as seasonality

and weather. In the most restrictive specification, we include city-by-year-by-month fixed effects,

city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, and city-by-temperature

quartile fixed effects. The identifying assumption is that the error term is uncorrelated with trans-

boundary air pollution given the control variables and fixed effects in the equation. To account

for both the potential serial correlation and spatial correlation of the error term, we use two-way

cluster-robust standard errors at the city and hour levels (Cameron et al., 2011).

In Figure 5, we provide a binned scatter plot of PMct against TransboundaryPMct to non-

parametrically examine the relationship between these two variables. Panel A shows the binned

scatter plot of the raw data without controls. We use 1 µg/m3 of TransboundaryPMct as the

bin size to calculate the average PMct level for each bin. The figure suggests a strong relation-

ship between the two variables. In Panel B, we residualize these variables by city-by-year-by-

month fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, and

city-by-temperature quartile fixed effects. We find that the relationship between PMct levels and

TransboundaryPMct levels is robust to these controls. Recall that HYSPLIT does not use any air

pollution information to obtain particle trajectories, and therefore, the positive relationship shown

in Figure 5 is not mechanical from HYSPLIT.

Table 2 shows the regression results of Equation (1). The results suggest that the estimate is

robust and stable to the choice of fixed effects and control variables. The coefficient in Column 4

implies that, on average, a 1 µg/m3 increase in transboundary PM2.5 from China results in a 0.137

µg/m3 increase in PM2.5 in South Korean cities. The Kleibergen-Paap rk Wald F-statistic is 3,953,

suggesting that there is a strong first-stage relationship between these two variables.
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3.2 Reduced-form Estimation

To identify the impact of transboundary air pollution from China on mortality in South Korean

cities, we estimate the following equation by OLS:

Mortalityct =
JX

j=0

�jTransboundaryPMc,t�j +Xct� + uct, (2)

where Mortalityct is the hourly mortality (deaths per billion people) in city c in hour t. We include

both the concurrent (j = 0) and lagged (j > 0) transboundary air pollution to estimate �j for

j = 1, ..., J . These coefficients estimate the short- and medium-run effects of transboundary air

pollution on mortality. We include the same set of fixed effects and control variables as the ones

included in the most restrictive specification (the final column) of Table 2 and use two-way cluster-

robust standard errors at the city and hour levels.15

Table 3 shows the estimation results of Equation (2). In Panel A, we include the average of

hourly transboundary PM2.5 levels from China in the past 70 days to estimate the average effect of

instantaneous and lagged transboundary PM2.5 levels.16 The estimate for the overall population (in

the final column) suggests that a 1 µg/m3 increase in transboundary PM2.5 from China in the past

70 days results in an increase in hourly mortality of 3.60 per billion people in South Korea. Because

the average hourly mortality is 618 per billion people in our sample, this marginal effect indicates

a 0.6% increase in mortality with respect to a 1 µg/m3 increase in transboundary PM2.5. In the

final row of the table, we also show the implied marginal effect on annual mortality per million

people. For the overall population, our estimate implies that a 1 µg/m3 increase in transboundary

PM2.5 in the past 70 days results in a 31.6 per million people increase in annual mortality.

In addition to the overall population, we also provide results for the elderly (ages 65 and above),

infants (ages below 1), and those who die from respiratory/cardiovascular diseases. The marginal

effect on mortality is higher for infants (a 2.2% increase in mortality with respect to 1 µg/m3

15In Table A.8, we show that our results are robust to the choice of different control variables and fixed effects.
16We show the results with the average of hourly transboundary PM2.5 from China in the past 70 days in Panel A

because we find that the lagged effects decay after 70 days in Panel B.
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increase in transboundary PM2.5) and those who succumbed to respiratory/cardiovascular diseases

(a 1.1% increase in mortality).

In Panel B, we estimate the weekly lagged effects of transboundary PM2.5 on mortality. We

include a set of 7-day average hourly transboundary PM2.5 levels from China. We find that trans-

boundary air pollution that arrived in the past 14-63 days tends to have the largest partial effects

on mortality, although pollution that arrived in the past 0-14 days also has significant effects. This

effect decays as we consider lagged effects beyond 63 days and becomes statistically insignificant.

This finding is consistent with the medium-run mortality effect of PM2.5 found in the literature.

For example, although the context is different from international air pollution spillover effects,

Deryugina, Heutel, Miller, Molitor and Reif (2019) find that exposure to PM2.5 has medium-run

effects on mortality for Medicare recipients in the United States but these lagged effects diminish

over time.17

In Figure 6, we visualize these weekly lagged effects and 95% confidence intervals. These

weekly lagged effects are useful for examining the possibility of the “harvesting effect” frequently

discussed in the literature (Deschênes and Moretti, 2009). The harvesting effect implies that air

pollution may not cause more total deaths but only cause forward displacement of mortality. That

is, air pollution may only result in the death of the sick who would have died a few days later even

in the absence of air pollution. Therefore, previous studies suggest that researchers estimate either

the longer-run average effect (such as our Panel A) or the series of lagged effects jointly with the

instantaneous effect (such as our Panel B).

If there is a substantial harvesting effect, we would observe positive effects in shorter lags

followed by negative effects in longer lags, creating a U-shaped line in Figure 6. Our estimation

results, however, show positive and significant effects in all the lags for the past 70 days, resulting

in an inverted U-shaped line. This evidence suggests that the harvesting effect is unlikely to be

substantial in our context.

17Deryugina, Heutel, Miller, Molitor and Reif (2019) note, “the increase in the effect of a 1-day shock appears to
level off after about 14 days, suggesting that the effects of acute exposure do not cause additional deaths beyond this
point."
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3.3 Instrumental Variables Estimation

Figure 5 and Table 2 show a strong first-stage relationship between transboundary PM2.5 traveling

from China to South Korea and PM2.5 levels in South Korea. This suggests that we could use

transboundary PM2.5 levels as an instrument for local PM2.5 levels to estimate the effect of PM2.5

on mortality in South Korea. The exclusion restriction assumption required for this instrumen-

tal variable (IV) estimation is that given the set of control variables included in the estimation,

transboundary PM2.5 levels affects mortality only through local PM2.5 levels.

We estimate the following equation using the IV regression:

Mortalityct =
JX

j=0

�jPMc,t�j +Xct� + uct. (3)

We use TransboundaryPMc,t�j as an instrumental variable for PMc,t�j , include the same set of fixed

effects and control variables included in Equation (2), and use two-way cluster-robust standard

errors at the city and hour levels.18

Table 4 presents the estimation results of Equation (3). The last column of Panel A indicates

that a 1 µg/m3 increase in PM2.5 in the past 70 days results in a 9.26 per billion people increase

in hourly mortality for the overall population. This implies a 81.1 per million people increase in

annual mortality and a 1.5% increase in mortality relative to the mean. The marginal effect in terms

of a percentage increase in mortality is larger for infants (a 5.8% increase) and those who die from

respiratory/cardiovascular diseases (a 2.9% increase).

Our reduced-form and IV estimates provide new evidence on the mortality impact of trans-

boundary air pollution. We can compare our IV estimate to recent estimates of the mortality

impacts of PM2.5 in other contexts and discuss what makes these estimates similar or different.

For example, Deryugina, Heutel, Miller, Molitor and Reif (2019) estimate the mortality effect of

PM2.5 for the elderly in the United States from 1999 to 2013 using the Medicare data with wind

direction as an instrument. They find that a 1 µg/m3 increase in PM2.5 exposure for one day causes

18We show that our results are robust to the choice of different control variables and fixed effects in Table A.9.
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0.69 additional deaths per million elderly individuals over a three-day window that spans the day

of the increase and the following two days. Panel B in our Table 4 suggests that the instantaneous

marginal effect of PM2.5 on the elderly is a 2.67 per billion people increase in hourly mortality,

which implies a 0.19 per million people increase in three-day mortality.19 This implies that the

magnitude of our IV estimate is similar to but slightly smaller than the IV estimate in Deryugina,

Heutel, Miller, Molitor and Reif (2019). There are several possible explanations for this difference.

First, the two studies use different instrumental variables and thus estimate different local average

treatment effects (Angrist and Imbens, 1995). Second, the elderly in South Korea are known to

have fewer underlying health conditions than the Medicare population in the United States, which

could make them relatively less vulnerable to exposure to PM2.5.20

3.4 Mortality Impacts by Age Group

The impact of air pollution on mortality can differ substantially across age groups. This hetero-

geneity is important to quantify for our analysis of policy implications in Section 4. To estimate

the heterogeneous effects of transboundary air pollution on mortality across ages, we divide our

mortality data into age groups and estimate Equations (2) and (3) separately for each group.

In Table 5, we find that the mortality impact of transboundary air pollution is statistically

and economically significant for infants and individuals over 30 years of age and insignificant for

individuals aged 1–29 years. Note that the baseline mortality is low for those between 1–29 years,

which could make statistically detecting the impact relatively more challenging.

The marginal effect on mortality in terms of percentage increases relative to the group’s base-

line mortality level in each group is the largest for infants. However, the marginal effect in terms

of increased death counts per billion people is higher for the elderly. We incorporate this hetero-

geneity in our analysis of policy implications in Section 4. Note that the IV estimates (Panel B) are

19This is because 2.67 · 24 · 3/1000 = 0.19.
20Another possibility is that the harmfulness of PM2.5 exposure can differ between two locations because the

toxicity of the small particles could vary. For example, Hsiang, Lee and Wilson (2022) find empirical evidence that
supports this possibility.
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larger than the OLS estimates (Panel A), because the first-stage coefficient on the transboundary

air pollution (Table 2) is less than one.

3.5 Impacts on Emergency Department Visits

In addition to its impact on mortality, air pollution may also increase morbidity (Barwick et al.,

2018). In particular, the short- and medium-run increases in air pollution are believed to influ-

ence the acute symptoms of asthma and rhinitis (Eguiluz-Gracia et al., 2020; Kuiper et al., 2021).

Thus, the increase in transboundary PM2.5 traveling from China to South Korea might cause such

symptoms to be more prevalent in the South Korean population.

In Table 6, we test this hypothesis using data on daily emergency department (ED) visits. The

outcome variable is the number of ED visits by diagnosis at the city-day level. We use the same

specification as Panel A in Tables 3 and 4 to estimate the reduced-form and IV regressions. Because

seasonal pollen (oak, pine, and weed) is also known to be related to ED visits in South Korea, we

include these three variables as additional controls in our estimation.

Results in Table 6 suggest that increases in transboundary PM2.5 levels result in increased ED

visits for asthma and rhinitis. We do not find such an impact for atopic dermatitis. The reduced-

form results imply that a 1 µg/m3 increase in transboundary PM2.5 concentrations traveling from

China to South Korea results in increases in daily ED visits of 45.2 and 502.7 per billion people

for asthma and rhinitis, respectively, which are 0.5% and 3.6% increases relative to the means.

One way to quantify the economic costs of these increased ED visits is to calculate the direct

medical costs of these visits. Kim et al. (2010) and Lee et al. (2017b) show that the average direct

cost of an ED visit in South Korea is $268 for asthma and $64.91 for rhinitis. With these estimates,

our findings imply that a 10 µg/m3 increase in transboundary PM2.5 levels results in increases in

South Korea’s annual direct medical costs by $2.29 million and $6.17 million from increased ED

visits for asthma and rhinitis, respectively.21

21Panel A in Table 6 implies that a 10 µg/m3 increase in transboundary PM2.5 results in an additional 165 annual
ED visits for asthma and 1,835 visits for rhinitis, per million people. Multiplying this by South Korea’s population
(51.76 million in 2019), the nationwide estimated total costs are $2.29 million for asthma and $6.17 million for asthma.
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3.6 Avoidance Behavior

To prevent harm to public health, South Korean municipalities can issue alerts when air pollution

reaches unhealthy levels. In this section, we examine whether these pollution alerts help mitigate

the mortality impacts of transboundary air pollution by inducing avoidance behavior.

Municipalities issue an advisory alert when the average hourly PM2.5 level exceeds 75 µg/m3

for two consecutive hours. They lift the alert when this average drops below 35 µg/m3. Pollution

alerts are announced through mass media, government websites, text messages, and mobile appli-

cations. SMS notifications inform residents of the pollution alert issuance and encourage them to

avoid strenuous outdoor activities. For each city and hour, we collected data on whether there was

an air pollution alert.

In Table 7, we calculate the average of hourly alerts for the previous 70 days interacted with

the average levels of transboundary air polluation for the same time frame. The negative coeffi-

cients on the interaction term suggest that air pollution alerts indeed mitigate the mortality impact

of transboundary air pollution that we find in Table 3. These effects are statistically significant

for the overall population and elderly but imprecise for infants and those with respiratory and

cardiovascular diseases.

4 Policy Implications

4.1 International Spillover Benefits of Environmental Regulation

Our empirical findings suggest that transboundary air pollution from China has substantial impacts

on mortality in South Korea. A key policy implication is that a country’s environmental regulation

may have an international spillover effect on citizens in other countries. As we discussed in the

introduction, this spillover effect has not been incorporated in economic analysis of environmental

regulation in the economics literature.

These estimates are in 2019 US dollars.
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To highlight this point, we consider an implication of a prominent environmental policy re-

cently implemented in China, known as “the war on pollution” (Greenstone, He, Li and Zou,

2021). In 2014, the Chinese government began to roll out a nationwide air pollution reduction

program. As shown in Figure 1, our data suggest that PM2.5 levels in China exhibited a long-run

decline during our sample period. This reduction also resulted in a decline in transboundary PM2.5

traveling from China to South Korea. Based on the data we obtained from HYSPLIT, we find

that the annual average level of transboundary PM2.5 from China to South Korea declined by 9.63

µg/m3 during our sample period (2015–2019).

We quantify South Korea’s economic benefit from this reduction in transboundary PM2.5 levels

based on the following procedure. Table 5 provides the age-specific reduced-form effects of trans-

boundary PM2.5 levels on mortality. We use these coefficients to calculate the benefit from a 9.63

µg/m3 reduction in transboundary PM2.5 levels on mortality in each age group in South Korea.

We then use the value of a statistical life (VSL) in the literature to obtain implied economic values

arising from reductions in mortality. Working on the age-specific estimates—as opposed to using

the average estimate—is important for two reasons. First, as we find in Table 5, the mortality ef-

fects of PM2.5 are heterogeneous across age groups. Second, the VSL can differ across age groups

as noted by Murphy and Topel (2006).

To our knowledge, no previous studies provide age-specific VSLs for South Korea. We find

three economic studies that estimate South Korea’s average VSL. Therefore, we make the fol-

lowing assumptions to obtain age-specific VSL estimates. We calculate an average of the VSL

estimates for South Korea from three studies in the literature (Shin and Joh, 2003; Kim et al.,

2003; Lee et al., 2011). This average VSL is $511,000 in 2019 US dollars.22 We then use the

method developed in Murphy and Topel (2006) to obtain VSL estimates for each age group.23 We

22The VSL estimates in Shin and Joh (2003), Kim et al. (2003), and Lee et al. (2011) are 466, 463, and 277 million,
respectively, in South Korean won. We use the Consumer Price Index (CPI) in South Korea—with values of 71.50,
73.11, 88.08, and 115.16 for the years 1999, 2000, 2006, and 2019, respectively—and the 2019 exchange rate (1165.36
KRW to 1 USD) to convert them to US dollars in 2019. These values are $630,000 $520,000 and $383,000 in 2019
US dollars, respectively.

23Figure 3 in Murphy and Topel (2006) shows the values of remaining lives at each age for the US population. We
assume that the curvature of these age-specific values can be applied to the South Korean population and scale the
function by the ratio of South Korea’s VSL to the US’s VSL in Murphy and Topel (2006).
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present the age-specific VSLs obtained from this approach in Table A.13.

In Table 8, we present the result of our calculation in the first row. We find that a 9.63 µg/m3

reduction in transboundary PM2.5 traveling from China to South Korea implies an economic benefit

of $2.80 billion per year for South Korea based on avoided mortality. This benefit represents 2.07%

of the nation’s healthcare spending in 2019. On a per capita basis, the annual spillover benefit

amounts to $54 per capita, compared to the annual national healthcare expenditure of $2,632 per

person. This result suggests that the international spillover benefit of environmental regulation is

economically substantial. The overall spillover benefit can be even larger than our estimate because

our calculation does not include other potential benefits such as reductions in morbidity costs and

negative effects on productivity and educational outcomes (Chang, Graff Zivin, Gross and Neidell,

2019; Ebenstein, Lavy and Roth, 2016; Greenstone et al., 2015; Bedi, Nakaguma, Restrepo and

Rieger, 2021; Borgschulte, Molitor and Zou, Forthcoming; Hanna and Oliva, 2015).

4.2 Strategic Pollution Reductions and Implications for Coasian Bargaining

For water pollution, several previous studies find that a country or local government might take

advantage of pollution spillovers by strategically allocating the flow of their water pollution (Sig-

man, 2002; Wang and Wang, 2021; He, Wang and Zhang, 2020). To our knowledge, such strategic

allocation has not been investigated for air pollution, but in theory it is possible because a country

or a local government is likely to have incentives to do so. If China made such a strategic decision

on where to reduce air pollution during the “war on pollution,” it may have prioritized reducing

air pollution for its citizens, and therefore air pollution may have decreased less for those living

in neighboring countries. This strategic decision could lower the overall potential international

spillover benefit.

To test this hypothesis, we use HYSPLIT to calculate the “in-China ratio” of the air pollu-

tion trajectories for each of 783 cities in China. We obtain the in-China ratio using the following

approach. For each city, day, and hour, we use HYSPLIT to obtain forward trajectories of air

pollution. We then compute the in-China ratio based on the number of forward trajectories that
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stayed within China divided by the total number of trajectories. We consider that a pollution tra-

jectory stayed within China if the trajectory remained inside the latitude and longitude boundaries

of China or if its altitude remains below 1 km since the start of the forward trajectory.

In Figure 7, we divide Chinese cities into four groups based on the quartile of the in-China ratio.

For example, cities in the first group have the lowest in-China ratio, meaning that air pollution

trajectories are less likely to fall within China. We compare the declines in PM2.5 levels relative

to 2015 among the four groups. The figure suggests that the first quartile group experienced a

reduction in PM2.5 by 9.29 µg/m3, which is similar to the reduction in transboundary PM2.5 levels

for South Korea (9.63 µg/m3). By contrast, the fourth quartile group had a PM2.5 reduction of

18.32 µg/m3. In Tables A.11 and A.12, we show that these differences in PM2.5 reductions between

the first quartile group and other groups are statistically significant.24

This result provides suggestive evidence that China may have indeed made a strategic decision

on where to reduce air pollution for “the war on pollution.”25 Consequently, the international

spillover benefit we calculated in the previous section may have been reduced due to this strategic

decision compared to a counterfactual scenario in which such a strategic decision was absent or

one in which China and South Korea engaged in Coasian bargaining to address this problem.

Coase (1960) describes that one of the challenging issues of applying Coasian bargaining in

practice is measuring the bargaining benefit. This is especially true for environmental externali-

ties in international contexts. For the international spillover of air pollution from China to South

Korea, our result can be used to measure the potential benefit from this bargaining. In the sec-

ond row of Table 8, we consider a counterfactual scenario and calculate the potential benefits of

China’s air pollution reductions. Suppose China reduced its transboundary PM2.5 levels by 14.07

µg/m3, which was the average reduction in PM2.5 levels in China during our sample period. In

24In Table A.15, we examine whether these four groups are systematically different in other aspects but do not find
systematic differences in economic variables such as GDP per capita and population.

25We want to emphasize that this is suggestive evidence because the in-china ratio is not randomly assigned,
and therefore, we need to rely on the standard identification assumption—given the control variables, the in-china
ratio needs to be uncorrelated with the error term in the regression. One threat to this assumption is that the Chinese
government might have focused on pollution reductions in cities with higher oil and coal production as these industries
are major sources of air pollution, not necessarily thinking of minimizing pollution exposures to domestic residents.
In Table A.12, we show that our results are robust to the inclusions of coal and oil production as additional controls.
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this case, the benefit of this reduction is $4.09 billion per year for South Korea. While there may

be many other obstacles to employing Coasian bargaining in practice, the results in Table 8 pro-

vide key measurements for these countries to consider whether a certain form of agreement and

compensation scheme on transboundary air pollution can be worthwhile.

5 Conclusion

In this study, we develop a framework that integrates recent advances in atmospheric science into

econometric estimation with microdata on mortality and health to study the international spillover

effects of air pollution. Combining transboundary particle trajectory data with the universe of

individual-level mortality and emergency department visit data in South Korea, we find that trans-

boundary air pollution from China significantly increases mortality and morbidity in South Korea.

Using our estimates, we quantify that a recent Chinese environmental regulation “the war on pol-

lution” had a substantial international spillover benefit. Our results suggest that a country’s envi-

ronmental policies could generate substantial hidden benefits for neighboring countries. Finally,

we demonstrate that China’s potentially strategic reductions in pollution could have undermined

these benefits, highlighting the implications for additional gains through Coasian bargaining.
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Figures

Figure 1: PM2.5 in China and South Korea
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Note: This figure illustrates the evolution of monthly average levels of hourly PM2.5 concentration. The Northwest
region in South Korea is defined as cities in South Korea with at least 35% of trajectories coming from China (see
Figure 3). The Southwest region in South Korea is defined as cities with less than 35% of trajectories coming from
China.
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Figure 2: Examples of Backward Trajectories
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Note: This figure shows three examples of backward trajectories obtained from HYSPLIT. For example, the green
trajectory came from northern China, passed through Beijing, and reached Seoul at 11 pm on January 14, 2016.
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Figure 3: Frequency of Trajectories Coming from China

Note: This figure shows the percentage of hours in which each city in South Korea had trajectories coming from China
during our sample period (January 2015 to December 2019). For each city in South Korea, we use the HYSPLIT
model to obtain backward trajectories for each day-hour. We then compute the percentage of backward trajectories
that came from China. That is, the denominator is the total number of hours from January 1, 2015 to December 31,
2019, and the numerator is the total number of hours in which the trajectories came from China. The duration of the
backward trajectories we use is 200 hours. For example, if this value is 50% for a city in South Korea, it means that in
half of the total hours in our sample period, this city had the trajectories coming from China.
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Figure 4: Frequencies of Trajectories From China to South Korea
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Note: This figure shows how often each city in China had a trajectory that passed the city and reached South Korea.
For each city in South Korea, we use the HYSPLIT model to obtain backward trajectories for each day-hour during
our sample period (January 2015 to December 2019). We then compute how often these backward trajectories passed
each city in China. That is, the denominator is the total number of hours from January 1, 2015 to December 31, 2019.
The numerator is the total number of hours in which a trajectory passed a city in China and reached cities in South
Korea. For example, if this value is 5% for a city in China, it means that in 5% of the total hours in our sample period,
a trajectory passed this city and reached a city in South Korea. The duration of the backward trajectories we use is 200
hours (we find that more than 99% of the trajectories that come from China to South Korea have duration less than
200 hours, as shown in Figure A.5).
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Figure 5: Scatter Plot of PM2.5 in South Korea and Transboundary PM2.5 from China
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Note: Panel A plots the mean of PM2.5 levels within each bin against the mean of transboundary PM2.5 levels within
each bin (with bins of size 1 µg/m3). Panel B plots the mean of residuals (from a regression of PM2.5 levels in South
Korea on city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects,
and city-by-temperature quartile fixed effects) against bins of residuals (from a regression of transboundary PM2.5

on city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, and
city-by-temperature quartile fixed effects).
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Figure 6: Weekly Lagged Effects of Transboundary Air Pollution on Mortality
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Note: This figure plots the estimates and 95% confidence intervals presented in Panel B of Table 3. Each point estimate
indicates the partial lagged marginal effect of transboundary PM2.5 (traveling from China to Korea) on hourly mortality
per billion people in South Korea.
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Figure 7: Testing for Strategic Air Pollution Reductions in China
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Note: This figure plots the change in PM2.5 levels relative to the 2015 level for Chinese cities, grouped by quartiles
of the in-China ratio. The in-China ratio is calculated by the following approach. For each city, day, and hour, we use
HYSPLIT to obtain forward air pollution trajectories. We then compute the in-China ratio based on the number of
trajectories that entered China divided by the total number of trajectories. A pollution trajectory is considered to have
fallen within China if the trajectory falls inside the latitude and longitude boundaries of China or if the trajectory’s
altitude is persistently below 1 km since the start of the forward trajectory. We provide the statistical analysis of this
relationship with a set of control variables in Tables A.11 and A.12.
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Tables

Table 1: Summary Statistics

Mean
Standard
Deviation

Number of
Observations

A. Data at the city-by-hour level

PM2.5 in Chinese cities (µg/m3) 45.05 38.40 30,844,642

PM2.5 in South Korean cities (µg/m3) 24.99 18.06 9,585,947

Transboundary PM2.5 from China to Korean cities (µg/m3) 14.49 26.34 9,741,674

Mortality rates in South Korea (hourly deaths per billion people)

Overall 894 3,800 9,991,872

Respiratory/Cardiovascular 231 1,954 9,991,872

Infant (age < 1) 327 27,702 9,991,872

Elderly (age � 65) 3,576 14,197 9,991,872

Hourly Temperature (�C) 13.01 10.43 9,966,769

Hourly Precipitation (mm) 0.13 1.00 9,942,103

B. Data at the city-by-day level

Emergency room visits (counts per billion people)

Atopic 0.08 0.32 250,116

Rhinitis 3.27 5.68 250,116

Asthma 2.15 2.65 250,116

C. Data at the city-by-year level

Population (in thousands)

Overall 232.35 240.08 1,140

Elderly (age � 65) 32.52 25.58 1,140

Infant (age < 1) 1.63 1.86 1,140

Note: This table reports summary statistics. All PM2.5 levels are in micrograms per cubic meter of air, abbreviated as
µg/m3. All mortality rates are hourly deaths per billion people in the corresponding age group. The sample includes
all South Korean cities and 784 Chinese cities over a period of January 2015 to December 2019.
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Table 2: First Stage: Impacts of Transboundary Air Pollution on Local Air Quality in South Korea

Dependent variable: Hourly PM2.5 levels in South Korean cities
(1) (2) (3) (4)

Hourly Transboundary PM2.5 0.180 0.137 0.137 0.137
(0.003) (0.002) (0.002) (0.002)

Constant 22.551
(0.327)

Observations 9,342,033 9,287,734 9,287,734 9,287,734
KP F-stat 2,884 3,647 3,945 3,953
Year-Month-City FE No No Yes Yes
Year-Month FE No Yes No No
Month-City FE No Yes No No
Month-Province FE No No No No
City FE Yes Yes Yes Yes
Day of week-City FE No Yes Yes Yes
Rainfall quartile-City FE No Yes No Yes
Temperature quartile-City FE No Yes No Yes
Rainfall quartile FE No No Yes No
Temperature quartile FE No No Yes No

Note: This table shows OLS estimation results for equation (1). Two-way cluster-robust standard errors at the city
and hour levels are reported in parentheses. All models are weighted by the city population. The KP F-stat is the
Kleibergen-Paap rk Wald F statistic. The sample includes all South Korean cities between January 2015 and December
2019.
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Table 3: Impacts of Transboundary Air Pollution on Mortality in South Korea (Reduced-form)

Panel A: Average Effect Over Past 70 Days (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-70 days) 3.60 19.09 6.93 1.67
(0.63) (4.20) (2.78) (0.23)

Observations 9,555,368 9,555,368 9,555,368 9,555,368
Mean of dependent variable 618 3,259 314 148
Marginal effect on mortality (%) 0.6% 0.6% 2.2% 1.1%
Marginal effect on annual mortality/million 31.6 167.3 60.7 14.7

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-7 days) 0.26 1.30 0.79 0.13
(0.10) (0.68) (0.57) (0.04)

Transboundary PM2.5 (past 7-14 days) 0.35 2.03 0.43 0.21
(0.08) (0.57) (0.66) (0.03)

Transboundary PM2.5 (past 14-21 days) 0.57 3.30 1.71 0.27
(0.11) (0.70) (0.60) (0.05)

Transboundary PM2.5 (past 21-28 days) 0.57 3.51 0.03 0.26
(0.11) (0.65) (0.47) (0.04)

Transboundary PM2.5 (past 28-35 days) 0.61 3.45 1.33 0.24
(0.12) (0.79) (0.69) (0.05)

Transboundary PM2.5 (past 35-42 days) 0.69 4.08 0.27 0.32
(0.12) (0.69) (0.77) (0.05)

Transboundary PM2.5 (past 42-49 days) 0.45 2.27 1.27 0.16
(0.11) (0.66) (0.73) (0.05)

Transboundary PM2.5 (past 49-56 days) 0.60 3.53 0.90 0.23
(0.08) (0.57) (0.71) (0.03)

Transboundary PM2.5 (past 56-63 days) 0.28 1.63 0.48 0.11
(0.06) (0.42) (0.49) (0.02)

Transboundary PM2.5 (past 63-70 days) 0.05 -0.40 0.92 0.06
(0.06) (0.41) (0.73) (0.02)

Observations 9,555,368 9,555,368 9,555,368 9,555,368
Mean of dependent variable 618 3,259 314 148

Note: This table shows OLS estimation results for equation (2). Two-way cluster-robust standard errors at the city and
hour levels are reported in parentheses. All regressions include city-by-year-by-month fixed effects, city-by-day of
week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted
by city-level population. The sample includes all South Korean cities between January 2015 and December 2019.
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Table 4: Impacts of Local Air Quality on Mortality in South Korean Cities (IV Estimation)

Panel A: Average Effect Over the Past 70 Days (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-70 days) 9.26 49.07 18.22 4.30
(1.65) (10.82) (7.33) (0.60)

Observations 9,528,960 9,528,960 9,528,960 9,528,960
Mean of dependent variable 618 3,258 314 148
Marginal effect on mortality (%) 1.5% 1.5% 5.8% 2.9%
Marginal effect on annual mortality/million 81.1 429.9 159.6 37.7

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-7 days) 0.55 2.67 1.58 0.29
(0.29) (1.89) (1.48) (0.10)

PM2.5 (past 7-14 days) 0.73 3.92 0.76 0.51
(0.23) (1.41) (1.84) (0.10)

PM2.5 (past 14-21 days) 1.40 8.28 3.98 0.73
(0.35) (2.20) (2.03) (0.15)

PM2.5 (past 21-28 days) 1.33 8.13 -0.33 0.70
(0.30) (1.89) (1.82) (0.12)

PM2.5 (past 28-35 days) 1.33 7.59 3.72 0.54
(0.28) (2.00) (1.64) (0.11)

PM2.5 (past 35-42 days) 1.85 11.36 0.67 0.81
(0.32) (1.78) (2.07) (0.14)

PM2.5 (past 42-49 days) 1.55 8.28 3.58 0.56
(0.35) (2.25) (2.06) (0.16)

PM2.5 (past 49-56 days) 2.36 13.98 3.78 0.86
(0.30) (1.92) (2.50) (0.13)

PM2.5 (past 56-63 days) 1.46 9.15 1.57 0.52
(0.23) (1.45) (1.35) (0.11)

PM2.5 (past 63-70 days) 0.05 -1.41 2.54 0.08
(0.15) (1.05) (1.88) (0.06)

Observations 9,274,113 9,274,113 9,274,113 9,274,113
Mean of dependent variable 617 3,260 315 148

Note: This table shows instrumental variable estimation results for equation (3). Two-way cluster-robust standard
errors at the city and hour levels are reported in parentheses. All columns include city-by-year-by-month fixed effects,
city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and
are weighted by city-level population. The Kleibergen-Paap rk Wald F statistic is 1,478 for all columns in Panel A and
221 for all columns in Panel B.
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Table 5: Impacts of Transboundary Air Pollution on Mortality by Age Group

Panel A: Reduced Form (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

Transboundary PM2.5 (past 0-70 days) 6.94 0.19 -0.24 0.15 0.99 0.58
(2.78) (0.21) (0.18) (0.18) (0.38) (0.32)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 2.2% 1.5% -1.3% 0.4% 1.3% 0.3%
Marginal effect on annual mortality/million 60.8 1.7 -2.1 1.4 8.7 5.1

50-59 60-69 70-79 80-89 90-99 100-109

Transboundary PM2.5 (past 0-70 days) 3.08 4.47 13.18 41.63 104.54 231.28
(0.62) (1.15) (4.20) (10.71) (45.33) (167.79)

Mean of dependent variable 364 746 2,313 7,324 19,368 16,318
Marginal effect as % increase in mortality 0.8% 0.6% 0.6% 0.6% 0.5% 1.4%
Marginal effect on annual mortality/million 27.0 39.1 115.4 364.6 915.7 2026.1

Panel B: IV Estimation (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

PM2.5 (past 0-70 days) 18.22 0.48 -0.59 0.40 2.58 1.54
(7.33) (0.55) (0.48) (0.47) (1.00) (0.83)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 5.8% 3.8% -3.3% 1.0% 3.3% 0.9%
Marginal effect on annual mortality/million 159.6 4.2 -5.2 3.5 22.6 13.5

50-59 60-69 70-79 80-89 90-99 100-109

PM2.5 (past 0-70 days) 7.98 11.36 33.48 107.65 270.80 591.13
(1.73) (3.01) (10.90) (27.96) (116.58) (429.42)

Mean of dependent variable 364 746 2,312 7,322 19,365 16,323
Marginal effect as % increase in mortality 2.2% 1.5% 1.4% 1.5% 1.4% 3.6%
Marginal effect on annual mortality/million 69.9 99.5 293.3 943.0 2372.2 5178.3

Note: Panel A shows age-specific results for the OLS estimation in equation (2), and Panel B shows results for
the instrumental variable estimation in equation (3). Two-way cluster-robust standard errors at the city and hour
levels are reported in parentheses. In the OLS estimation, all age groups have 9,555,368 observations, except for the
age group 100-109, which has 9,537,950 observations. The age group 100-109 has fewer observations because the
population for age over 100 is 0 for some years in some cities in the sample. In the IV estimation, all age groups
have 9,528,950 observations, except for the age group 100-109, which has 9,511,542 observations. All regressions
include city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects,
city-by-temperature quartile fixed effects, and are weighted by city-level population. The Kleibergen-Paap rk Wald F
statistic for Panel B is 1,478 for all age groups except for age group 100-109 (1,475). The sample includes all South
Korean cities between January 2015 and December 2019.
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Table 6: The Impact of Transboundary Air Pollution on Emergency Department Visits

Panel A: Reduced-form Estimation

Asthma Rhinitis Atopic

Transboundary PM2.5 (past 0-60 days) 45.2 502.7 -2.3
(11.1) (56.5) (1.5)

Observations 234,389 234,389 234,389
Mean of dependent variable 9214.0 14037.6 364.0
Marginal effect as % increase in ED visits 0.5% 3.6% -0.6%
Marginal effect on annual ED visits/million 16.5 183.5 -0.8

Panel B: Instrumental Variable Estimation
Asthma Rhinitis Atopic

PM2.5 (past 0-60 days) 181.7 2020.1 -9.2
(46.3) (254.3) (6.1)

Observations 234,389 234,389 234,389
Mean of dependent variable 9214.0 14037.6 364.0
Marginal effect as % increase in ED visits 2.0% 14.4% -2.5%
Marginal effect on annual ED visits/million 66.3 737.3 -3.4

Note: Standard errors, clustered by city, are reported in parentheses. All regressions include city-by-year-by-month
fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile
fixed effects, city-by-humidity quartile fixed effects, and are weighted by city-level population. The Kleibergen-Paap
rk Wald F statistic is 637 for all columns in the IV estimation. The sample includes all South Korean cities between
January 2015 and December 2017. The dependent variables are the numbers of daily ED visits per billion people due
to asthma, rhinitis, and atopic dermatitis, respectively. All columns in this table include controls for pollen variables
(oak, pine and weed pollen).
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Table 7: The Impact of Transboundary Air Pollution and Air Pollution Alerts on Mortality

Panel A: Reduced Form (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-70 days) 4.48 25.31 4.70 2.01
(0.68) (4.56) (3.01) (0.27)

Alert (past 0-70 days) -99.84 -1008.15 613.96 -112.30
(85.11) (558.78) (596.97) (35.20)

Trans. PM2.5 (past 0-70 days) ⇥ Alert (past 0-70 days) -21.22 -131.68 30.89 -3.47
(4.95) (39.17) (41.73) (3.27)

Mean of dependent variable 618 3,259 314 148

Panel B: IV Estimation (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-70 days) 16.20 90.27 23.80 7.97
(2.72) (18.44) (13.21) (1.11)

Alert (past 0-70 days) -946.51 -5408.95 -2079.12 -690.35
(278.47) (2063.96) (2056.08) (144.77)

PM2.5 (past 0-70 days) ⇥ Alert (past 0-70 days) -30.61 -199.75 87.44 -0.08
(11.10) (88.51) (94.63) (7.37)

Mean of dependent variable 618 3,258 314 148

Note: All regressions include city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall
quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted by city-level population. Two-way
cluster-robust standard errors at the city and hour levels are reported in parentheses. The Kleibergen-Paap rk Wald
F statistic for Panel B is 806. All groups have 9,528,960 observations. The sample includes all South Korean cities
between January 2015 and December 2019.
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Table 8: International Spillover Benefits of Reductions in Air Pollution ($ billion/year)

Overall Infant Youth Adult Elderly
< 1 1� 19 20� 64 � 65

Status Quo:
Reduction of Transboundary PM2.5 by 9.63 µg/ m3 2.80 0.11 0.03 1.65 1.00

Counterfactual Scenario:
Reduction of Transboundary PM2.5 by 14.07 µg/ m3 4.09 0.17 0.05 2.41 1.46

Note: This table shows the international spillover benefits of reductions in air pollution for three scenarios. The table
reports the per-year spillover benefit for South Korea in 2019 US billion dollars. We calculate the benefits based on the
estimates of the age-specific impacts of transboundary air pollution on mortality in Table and the age-specific value of
a statistical life described in Section 4. The status quo is based on the actual reduction in transboundary air pollution
from China to South Korea observed in our data during our sample period (9.63 µg/m3). The counterfactual scenario
is based on the national-average pollution reduction in China during our sample period (14.07 µg/m3).
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Appendix A Details of the HYSPLIT model
In this section, we provide details of the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT),
an open-source computer software for simulating atmospheric transport and dispersion.26

Brief description of the HYSPLIT model
Developed by the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory and the Aus-
tralian Bureau of Meteorology Research Centre in 1998, HYSPLIT computes trajectories of particles to determine how
far and where particles will travel. The model can also simulate particle dispersion and compute air concentrations.
However, we focus our attention on trajectory computation, because our study is concerned with determining whether
pollutants in South Korea passed through China. Particle dispersion is useful when estimating the effect of emissions
from point sources, such as factories and power plants.

To compute a forward trajectory or a backward trajectory, the model takes a coordinate and a height of a starting
location, a starting time, a trajectory duration, and other parameters as inputs and computes a trajectory of a single
particle using the mean wind speed and direction of each grid that the particle passes by.27 The forward trajectory
is calculated by tracking the movement of the air mass in time, whereas the backward trajectory is calculated by
tracking the movement of the air mass back in time. Forward trajectory analysis is useful for determining the particle
dispersion, while backward trajectory analysis is useful for determining the origins of pollutants.

Figure A.1 shows how forward trajectories are calculated in the HYSPLIT model. Given the initial position P (t)
and the first-guess position P 0(t + �t) = P (t) + V (P, t)�t where V (P, t) denote the velocity vector, V (P, t) is
linearly interpolated, which is then used to obtain the final position:

P (t+�t) = P (t) +
V (P, t) + V (P 0, t+�t)

2
·�t.

Backward trajectories are calculated using the same procedure, except that �t is now negative.

Comparison between different methods of analysis in the HYSPLIT model
The purpose of using the HYSPLIT model is to determine whether pollution in South Korea at a given time comes
from China. To address this question, we explored a number of possible options using the HYSPLIT model.

First, we discuss the benefits and limitations of forward and backward trajectory analyses. Forward trajectory anal-
ysis is useful for determining emission paths or dispersion of pollutants from a point source. For example, Hernandez-
Cortes and Meng (2023) computes concentrations of air pollutants for each zip code and year by running forward
trajectory simulations from each facility in California. To address our research question, one may imagine running
forward trajectory simulations from polluting facilities in China. This method of analysis has its appeals, because we
would then be able to determine the effect of anthropogenic transboundary air pollution from Chinese factories and
power plants.

However, our research question is to determine the effect of transboundary air pollution from China, which would
also include ambient air pollution from the use of coal for heating in winter. Then to capture all the possible paths
of pollution flow from China to South Korea, we would ideally simulate forward trajectories from all the coordinates
in China. However, we face a number of issues in creating the instrument this way. First, simulating from all the
coordinates in China at various heights makes it computationally less tractable. Second, these forward trajectories

26The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYS-
PLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this
publication. See Stein et al. (2015) for more information on HYSPLIT.

27For the meteorological data for the HYSPLIT model, we use the NCEP/NCAR Reanalysis data, available from
1948 to present. The NCEP/NCAR Reanalysis data set is a continuously updated globally-gridded data set that is
jointly produced by the National Centers for Environmental Prediction (NCEP) and the National Center for Atmo-
spheric Research (NCAR). This data set is a product of a data assimilation project where the initial states of the at-
mosphere are “reanalyzed” by incorporating historical observations and using a numerical weather prediction (NWP)
model from 1948 to present. This data set has a 2.5° ⇥ 2.5° spatial resolution with a timestamp of six hours.
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Figure A.1: Description of the Trajectory Equation
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may not fully capture all the possible paths of transboundary air movements due to discrete starting points of trajectory
simulation.

On the other hand, backward trajectory analysis is useful for determining the source locations of pollutants. For
our research question, we can track back in time trajectories that are simulated from South Korea to determine whether
the trajectories reach China. This method is computationally less intensive than the first method, because trajectories
can be simulated from each South Korean city at a given height.

However, this method also has limitations. Simulating backward trajectories with a given duration is based on
the assumption that pollutants have traveled for that given duration; that is, we cannot determine whether pollution
originated from China. This is a valid concern in that we cannot ascertain exact sources of air pollution that arrive at
South Korea if there are multiple possible polluting sources in the region. However, this is not a grave concern for our
study, because we are interested in knowing whether air pollution in South Korea passed through China, not whether
it originated from China. It is possible that the transboundary air pollution variable picked up pollution from other
neighboring countries of China.

Another limitation is that trajectories of particles from two different source locations may intersect at a city in
South Korea, and computing backward trajectories may not correctly identify the source locations. However, this
is a limitation of the HYSPLIT model that exists in both forward and backward trajectory analyses. The trajectory
calculation relies on the mean wind speed and wind direction at the grid point, and the advection of a particle is
computed using the mean of the three-dimensional velocity vectors obtained from the input meteorological conditions.
Thus, the trajectory analysis in the HYSPLIT model provides the average locations of the particle back in time, which
we believe is a good approximation of the mean locations of the pollutants observed at the pollution monitor in South
Korean cities back in time.

One may then ask whether particle dispersion can address our research question better than trajectory calculation.
HYSPLIT introduces particle dispersion by calculating the trajectory for many points. However, each trajectory
changes its course by the random atmospheric turbulence along its path (where the random shock is provided within
the HYSPLIT model), creating dispersion among particles. Due to this method of computation, particle dispersion
results in the arrival of fewer particles as the distance between the source and the destination increases. Thus, we
decided that computing backward trajectories is the most suitable way to determine whether air pollution in South
Korea at a given time passed through China some time ago in expectation.
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Construction of instrumental variables using the HYSPLIT model
To construct instrumental variables, we run backward trajectory simulations in the HYSPLIT model. We compute
200-hour backward trajectories 500 meters off the ground every hour for each South Korean city from January 2015 to
December 2019, running 9,986,400 trajectories in total (24 hourly trajectories/day ⇥ 365 days/year ⇥ 5 years ⇥ 228
cities in South Korea).

The height of 500 meters was selected, because if a trajectory starts at a height close to the ground level, it will
most likely not travel anywhere. In the atmospheric sciences literature, the height of 850 hPa, which is usually just
above the planetary boundary layer (PBL), is typically used for backward trajectory simulations. The idea is that if
an air parcel reaches that level, the dynamics of the atmospheric boundary layer will bring it down to the surface.
Because the focus of our study is near-surface transport of particulate matter, we do not want to simulate trajectories
at an altitude higher than the PBL, the lowest part of the atmosphere directly influenced by the Earth’s surface. We
decided to choose an altitude below the PBL to capture the air mass dynamics most relevant for near-surface transport.

We also chose a starting height that is sufficiently high within the PBL to avoid local topographic influences yet
still capture near-surface transport. If the starting height is too low, the trajectories can be excessively influenced
by local surface effects (e.g., topography, vegetation) that occur at lower altitudes, making the trajectory easily hit the
ground and lose accuracy. Ryan et al. (2023) state that the mid-boundary-layer starting height (500m) was chosen as it
best represents the source of air in the well-mixed planetary boundary layer. The Kleibergen-Paap rk Wald F-statistics
in Table A.10 also provides supporting evidence on this point. The first stage relationship is strongest at 500 meters
and becomes substantially weaker at 100 meters.

The main instrument used in this study takes the average value of the PM2.5 concentrations retrieved from the
nearest monitors to each hourly trajectory point within China, and 0 otherwise. We define that a trajectory point is
within China if the particle enters the boundary layer of China under the specified height (we use 1 km for the default
height, but we test other heights for robustness checks) in the duration of 200 hours.

The alternative instrument used for the robustness check takes the value of the PM2.5 concentration retrieved from
the final Chinese city that the trajectory passed through before arriving at South Korea, or 0 otherwise.
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Appendix B Construction of a city-level dataset
Hourly PM2.5 concentrations in South Korea are obtained from the Korea Environment Corporation’s air pollution
data. The data are at the hourly, monitor level. To convert the monitor-level data to the city-level data, we take the
following steps:

1. Using the coordinates of the monitoring stations, we map monitoring stations onto South Korean cities.

2. We categorize monitoring stations into “good” monitors and “bad” monitors. A “good” monitor is defined as
a monitor that has a non-missing rate (in days) higher than 90%, and a “bad” monitor as a monitor that has a
non-missing rate lower than 90%.

3. We then categorize South Korean cities, for each date, into three groups: 1) cities that have a good monitor
within their boundaries, 2) cities that do not have any good monitors, but only a bad monitor within their
boundaries, and 3) cities that do not have any monitor within their boundaries.

4. For cities in the second group or the third group, we impute their missing values with the values from the nearest
good monitor. The nearest good monitor of a city is defined as a good monitor outside the city’s boundary that
is closest in Euclidean distance from the centroid of the city.

5. When a city has multiple good monitors and bad monitors, we take the average of hourly values across the good
monitors. When a city does not have any good monitor but has multiple bad monitors, we take the average of
hourly values across the bad monitors.

The same procedure is applied to the South Korean monitor-level meteorological data obtained from the Korea Mete-
orological Administration. The meteorological data include wind, rainfall, temperature, and humidity levels, some of
which are included as control variables in our empirical analysis.

Hourly PM2.5 concentrations in China are obtained from Berkeley Earth. Berkeley Earth collects hourly PM2.5

concentration observations at the city level that are regionally interpolated from real-time observations made by
ground-level monitoring stations. Detailed discussion of the interpolation process can be found in Rohde and Muller
(2015).
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Appendix C Additional Figures and Tables
In this online appendix, we provide additional figures and tables from our analysis.
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Figure A.2: Seasonality in Wind Speed and Direction in Seoul
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Note: Panel A shows the monthly fraction of hours with westerly winds in Seoul. The sample includes all the meteo-
rological stations in Seoul, South Korea, between January 2015 and December 2019.
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Figure A.3: Map of PM2.5 Monitor Locations

Note: This figure shows the locations of city coordinates available in the Chinese hourly PM2.5 concentrations data
from Berkeley Earth (Panel A) and the locations of monitors in the South Korean hourly PM2.5 concentrations data
from the Korea Environment Corporation (Panel B).
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Figure A.4: Location of Meteorological Monitoring Stations in South Korea

Note: This figure shows the locations of ground monitoring stations that collect meteorological data in South Korea.
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Figure A.5: Histogram of the Duration of Trajectories from China to South Korea
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Note: We define the duration of a trajectory as the number of hours it took from the last grid point in China to a city
in South Korea. The sample includes trajectories from all South Korean cities between January 2015 and December
2019. The mean is 52 hours, and the median is 38 hours. The 25th percentile is 22 hours, and the 75th percentile is 69
hours.
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Table A.1: PM2.5 Concentrations by Season and Province

Province Spring Summer Fall Winter

South Korea
Busan 28.34 22.13 21.63 28.45
Chungcheongbuk-do 29.5 16.85 24.22 34.37
Chungcheongnam-do 26.31 19.71 25.22 30.87
Daegu 25.39 20.02 22.65 29.83
Daejeon 26.17 16.51 20.91 28.48
Gangwon-do 28.62 18.6 20.07 30.57
Gwangju 25.78 18.86 22.74 26.3
Gyeonggi-do 30.58 18.47 23.08 33.55
Gyeongsangbuk-do 26.15 17.84 21.88 27.74
Gyeongsangnam-do 25.81 21.77 20.55 25.94
Incheon 29.15 21.62 23.42 29.16
Jeju 23.52 17.01 18.1 22.02
Jeollabuk-do 31.84 21.27 27.05 33.38
Jeollanam-do 25.68 20.42 20.81 25.46
Sejong 25.4 18.81 19.74 27.3
Seoul 28.3 20.3 20.7 28.84
Ulsan 28.13 23.25 20.64 25.05

China
Anhui 52.96 33.04 49.19 81.01
Beijing 58.97 43.09 56.18 77.06
Chongqing 41.73 31.19 39.54 75.36
Fujian 31.25 20.29 24.3 35.48
Gansu 39.19 26.39 32.32 53.25
Guangdong 31.97 21.35 33.29 44.03
Guangxi 36.09 23.52 35.44 54.8
Guizhou 34.34 22.19 30.01 48.53
Hainan 21.69 13.37 20.53 29.16
Hebei 60.99 46.93 62.16 97.66
Heilongjiang 33.55 19.67 36.27 52.41
Henan 63.15 41.88 59.75 111.45
Hubei 51.77 32.43 47.62 89.75
Hunan 43.25 27.97 43.51 72.01
Inner Mongolia 32.11 23.93 30.93 42.54
Jiangsu 51.55 33.27 43.17 76.26
Jiangxi 40.41 27.19 38.98 60.22
Jilin 38.63 22.61 39.55 59.39
Liaoning 45.51 29.36 43.94 62.56
Ningxia Hui Autonomous Region 43.87 32.22 44.12 61.5
Qinghai 43 29.9 39.32 62.99
Shaanxi 49.16 32.18 50.34 96.04
Shandong 57.5 37.97 55.16 92.17
Shanghai 47.04 32.73 37 62.76
Shanxi 52.63 41.77 54.48 87.54
Sichuan 44.03 28.74 38.03 74.6
Tianjin 62.84 46.11 61.11 85.08
Tibet 22.53 15.25 20.13 27.89
Xinjiang 62.22 34.79 43.65 76.96
Yunnan 32.04 18.95 22.76 31.77
Zhejiang 41.82 26.54 34.16 57.99
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Table A.2: Robustness Check on Tables 3 and 4: Average Effect over Past 140 Days

Panel A: Reduced-form Estimation (Dependent variable: hourly mortality per billion)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-140 days) 4.02 20.04 7.53 1.68
(0.75) (5.03) (4.31) (0.18)

Mean of dependent variable 618 3,250 314 149
Marginal effect on mortality (%) 0.7% 0.6% 2.4% 1.1%
Marginal effect on annual mortality/million 35.2 175.6 66.0 14.7

Panel B: IV Estimation (Dependent variable: hourly mortality per billion)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-140 days) 7.75 38.62 14.48 3.23
(1.47) (9.77) (8.25) (0.36)

Mean of dependent variable 618 3,250 314 149
Marginal effect on mortality (%) 1.3% 1.2% 4.6% 2.2%
Marginal effect on annual mortality/million 67.9 338.3 126.9 28.3

Note: Panel A shows OLS estimation results for equation (2). Panel B shows IV estimation results for equation (3).
Two-way cluster-robust standard errors at the city and hour levels are reported in parentheses. The dependent variable
is hourly mortality per billion people in each category. In the OLS estimation, all groups have 9,177,203 observations.
In the IV estimation, all groups have 9,172,016 observations. All regressions include city-by-year-by-month fixed
effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed
effects, and are weighted by city-level population. The Kleibergen-Paap rk Wald F statistic is 1,260 for all columns in
Panel B. The sample includes all South Korean cities between January 2015 and December 2019.
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Table A.3: Robustness Check on the Instrument: Alternative Instrument Using Only the Last Point
in China (First-Stage Regressions of Transboundary Air Pollution on Local Air Quality in South
Korea)

(1) (2) (3) (4)

Hourly Transboundary PM2.5 0.170 0.129 0.129 0.129
(0.003) (0.002) (0.002) (0.002)

Constant 22.774
(0.325)

Observations 9,161,475 9,108,372 9,108,372 9,108,372
KP F-stat 2521 3111 3344 3273
Year-Month-City FE No No Yes Yes
Year-Month FE No Yes No No
Month-City FE No Yes No No
Month-Province FE No No No No
City FE Yes Yes Yes Yes
Day of week-City FE No Yes Yes Yes
Rainfall quartile-City FE No Yes No Yes
Temperature quartile-City FE No Yes No Yes
Rainfall quartile FE No No Yes No
Temperature quartile FE No No Yes No

Note: The alternative instrumental variable used in this set of regressions takes the values as follows. If the 200-hour
backward trajectory does not reach China, then it takes a value of 0. If it reaches China, then all the hourly trajectory
points are matched with the nearest pollution monitors in China. The instrument takes the average of all the PM2.5

values collected from the nearest Chinese monitors for each trajectory point. This table shows OLS estimation results
for equation (1) using this alternative instrument. Two-way cluster-robust standard errors at the city and hour levels
are reported in parentheses. The dependent variable is hourly mortality per billion people in each category. The
first specification has 9,342,033 observations, and the rest have 9,287,734 observations. The sample periods are from
January 2015 to December 2019.
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Table A.4: Robustness Check on the Instrument: Alternative Instrument Using Only the Last Point
in China (Impacts of Transboundary Air Pollution on Mortality in South Korea, Reduced-form)

Panel A: Average Effect Over Past 70 Days (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-70 days) 3.56 19.00 6.68 1.66
(0.57) (3.88) (2.58) (0.23)

Observations 9,555,368 9,555,368 9,555,368 9,555,368
Mean of dependent variable 618 3,259 314 148
Marginal effect on mortality (%) 0.6% 0.6% 2.1% 1.1%
Marginal effect on annual mortality/million 31.2 166.5 58.5 14.5

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

Transboundary PM2.5 (past 0-7 day) 0.28 1.35 0.90 0.14
(0.10) (0.65) (0.58) (0.04)

Transboundary PM2.5 (past 7-14 day) 0.34 1.93 0.37 0.21
(0.08) (0.58) (0.66) (0.04)

Transboundary PM2.5 (past 14-21 day) 0.55 3.16 2.02 0.25
(0.11) (0.65) (0.69) (0.05)

Transboundary PM2.5 (past 21-28 day) 0.60 3.59 -0.36 0.25
(0.11) (0.66) (0.43) (0.05)

Transboundary PM2.5 (past 28-35 day) 0.62 3.61 1.18 0.23
(0.11) (0.80) (0.69) (0.05)

Transboundary PM2.5 (past 35-42 day) 0.66 3.81 0.10 0.27
(0.12) (0.68) (0.74) (0.05)

Transboundary PM2.5 (past 42-49 day) 0.47 2.42 1.21 0.14
(0.11) (0.63) (0.74) (0.05)

Transboundary PM2.5 (past 49-56 day) 0.61 3.50 0.87 0.22
(0.07) (0.56) (0.72) (0.03)

Transboundary PM2.5 (past 56-63 day) 0.29 1.74 0.42 0.12
(0.06) (0.44) (0.40) (0.02)

Transboundary PM2.5 (past 63-70 day) 0.07 -0.09 0.67 0.09
(0.06) (0.41) (0.67) (0.02)

Observations 9,555,318 9,555,318 9,555,318 9,555,318
Mean of dependent variable 618 3,259 314 148

Note: This table shows OLS estimation results for equation (2). Two-way cluster-robust standard errors at the city and
hour levels are reported in parentheses. All regressions include city-by-year-by-month fixed effects, city-by-day of
week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are weighted
by city-level population. The sample includes all South Korean cities between January 2015 and December 2019.
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Table A.5: Robustness Check on the Instrument: Alternative Instrument Using Only the Last Point
in China (Impacts of Local Air Quality on Mortality in South Korean Cities, IV Estimation)

Panel A: Average Effect Over the Past 70 Days (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-70 days) 9.10 48.63 17.47 4.24
(1.48) (9.91) (6.79) (0.58)

Mean of dependent variable 618 3,258 314 148
Marginal effect on mortality (%) 1.5% 1.5% 5.6% 2.9%
Marginal effect on annual mortality/million 79.7 426.0 153.0 37.2

Panel B: Weekly Lagged Effects (Dependent variable: hourly mortality per billion people)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-7 days) 0.78 4.05 2.08 0.37
(0.29) (1.83) (1.69) (0.09)

PM2.5 (past 7-14 days) 0.69 3.68 0.25 0.52
(0.20) (1.34) (1.68) (0.09)

PM2.5 (past 14-21 days) 1.23 7.10 5.15 0.62
(0.31) (1.89) (2.09) (0.14)

PM2.5 (past 21-28 days) 1.37 8.23 -1.41 0.67
(0.28) (1.69) (1.52) (0.12)

PM2.5 (past 28-35 days) 1.31 7.88 3.49 0.51
(0.28) (1.92) (1.62) (0.11)

PM2.5 (past 35-42 days) 1.63 9.77 0.12 0.66
(0.29) (1.56) (1.87) (0.12)

PM2.5 (past 42-49 days) 1.37 7.50 3.01 0.43
(0.33) (2.05) (2.02) (0.15)

PM2.5 (past 49-56 days) 2.23 13.01 3.79 0.78
(0.29) (1.88) (2.40) (0.13)

PM2.5 (past 56-63 days) 1.42 8.94 1.12 0.49
(0.25) (1.53) (1.30) (0.10)

PM2.5 (past 63-70 days) 0.20 -0.03 2.11 0.21
(0.14) (1.15) (1.64) (0.07)

Mean of dependent variable 617 3,260 315 148

Note: This table shows instrumental variable estimation results for equation (3). Two-way cluster-robust standard
errors at the city and hour levels are reported in parentheses. All groups in Panel A have 9,528,960 observations, and
all groups in Panel B have 9,274,063 observations. All columns include city-by-year-by-month fixed effects, city-
by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile fixed effects, and are
weighted by city-level population. The Kleibergen-Paap rk Wald F statistic is 1,816 for all columns in Panel A and
356 for all columns in Panel B.

A-14



Table A.6: Robustness Check on the Instrument: Alternative Instrument Using Only the Last Point
in China (Impacts of Transboundary Air Pollution on Mortality by Age Group)

Panel A: Reduced Form (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

Transboundary PM2.5 (past 0-70 days) 6.68 0.18 -0.14 0.04 0.94 0.61
(2.58) (0.22) (0.18) (0.19) (0.40) (0.34)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 2.1% 1.5% -0.8% 0.1% 1.2% 0.4%
Marginal effect on annual mortality/million 58.6 1.6 -1.3 0.3 8.2 5.3

50-59 60-69 70-79 80-89 90-99 100-109

Transboundary PM2.5 (past 0-70 days) 2.70 4.60 13.85 39.63 110.42 185.48
(0.62) (1.17) (3.86) (10.09) (41.15) (174.13)

Mean of dependent variable 364 746 2313 7324 19368 16318
Marginal effect as % increase in mortality 0.7% 0.6% 0.6% 0.5% 0.6% 1.1%
Marginal effect on annual mortality/million 23.6 40.3 121.3 347.1 967.3 1624.8

Panel B: IV Estimation (Dependent variable: hourly mortality per billion people)

Infant 1-9 10-19 20-29 30-39 40-49

PM2.5 (past 0-70 days) 17.48 0.46 -0.35 0.09 2.43 1.61
(6.79) (0.58) (0.47) (0.51) (1.03) (0.89)

Mean of dependent variable 314 12 18 42 79 169
Marginal effect as % increase in mortality 5.6% 3.7% -2.0% 0.2% 3.1% 0.9%
Marginal effect on annual mortality/million 153.1 4.0 -3.1 0.8 21.3 14.1

50-59 60-69 70-79 80-89 90-99 100-109

PM2.5 (past 0-70 days) 6.93 11.62 35.13 101.91 285.67 467.04
(1.68) (3.03) (9.97) (26.21) (104.98) (443.11)

Mean of dependent variable 364 746 2312 7322 19365 16323
Marginal effect as % increase in mortality 1.9% 1.6% 1.5% 1.4% 1.5% 2.9%
Marginal effect on annual mortality/million 60.7 101.8 307.7 892.8 2502.5 4091.3

Note: Panel A shows age-specific results for the OLS estimation in equation (2), and Panel B shows results for
the instrumental variable estimation in equation (3). Two-way cluster-robust standard errors at the city and hour
levels are reported in parentheses. In the OLS estimation, all age groups have 9,555,368 observations, except for the
age group 100-109, which has 9,537,950 observations. The age group 100-109 has fewer observations because the
population for age over 100 is 0 for some years in some cities in the sample. In the IV estimation, all age groups
have 9,528,950 observations, except for the age group 100-109, which has 9,511,542 observations. All regressions
include city-by-year-by-month fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects,
city-by-temperature quartile fixed effects, and are weighted by city-level population. The Kleibergen-Paap rk Wald F
statistic for Panel B is 1,814 for all age groups except for age group 100-109 (1,825). The sample includes all South
Korean cities between January 2015 and December 2019.

A-15



Table A.7: Robustness Check on on Tables 3 and 4: IV Interacted with Distance

Panel A: Impacts of Transboundary Air Pollution on Local Air Quality in South Korea (First-Stage
Regressions)

(1) (2) (3) (4)

Hourly Transboundary PM2.5 0.195 0.142 0.143 0.143
(0.005) (0.002) (0.002) (0.002)

Hourly Transboundary PM2.5 ⇥ Distance -0.038 -0.018 -0.020 -0.020
(0.005) (0.003) (0.003) (0.003)

Constant 22.393
(0.311)

Observations 9,159,814 9,106,739 9,106,739 9,106,739
KP F-stat 1462 1969 2230 2178
Year-Month-City FE No No Yes Yes
Year-Month FE No Yes No No
Month-City FE No Yes No No
Month-Province FE No No No No
City FE Yes Yes Yes Yes
Day of week-City FE No Yes Yes Yes
Rainfall quartile-City FE No Yes No Yes
Temperature quartile-City FE No Yes No Yes
Rainfall quartile FE No No Yes No
Temperature quartile FE No No Yes No

Panel B: Impacts of Local Air Quality on Mortality (2SLS Estimation)

Overall Elderly Infant
Respiratory/

cardiovascular

PM2.5 (past 0-70 days) 8.68 44.83 19.49 4.13
(1.60) (10.38) (7.51) (0.57)

Observations 9,528,960 9,528,960 9,528,960 9,528,960
Mean of dependent variable 618 3,258 314 148
Marginal effect on mortality (%) 1.4% 1.4% 6.2% 2.8%
Marginal effect on annual mortality/million 76.0 392.7 170.8 36.2

Note: The additional instrumental variable used in this set of regressions takes the values as follows. If the 200-hour
backward trajectory does not reach China, then it takes a value of 0. If it reaches China, then it takes the value of
the PM2.5 level from the nearest Chinese monitor multiplied by the demeaned distance (in 1000 km) of the trajectory
from the starting point to the first arrival point of the backward trajectory in China. This table shows OLS estimation
results for equation (1) using this alternative instrument. Two-way cluster-robust standard errors at the city and hour
levels are reported in parentheses. The dependent variable is hourly mortality per billion people in each category. The
sample periods are from January 2015 to December 2019.
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Table A.8: Robustness Check for the Choices of Different Control Variables for Reduced Form
Estimation

(1) (2) (3) (4)

Transboundary PM2.5 (past 0-7 days) 0.26 0.26 0.17 0.18
(0.10) (0.10) (0.10) (0.10)

Transboundary PM2.5 (past 7-14 days) 0.35 0.35 0.24 0.24
(0.08) (0.09) (0.07) (0.07)

Transboundary PM2.5 (past 14-21 days) 0.57 0.57 0.41 0.40
(0.11) (0.11) (0.09) (0.09)

Transboundary PM2.5 (past 21-28 days) 0.57 0.59 0.41 0.39
(0.11) (0.11) (0.08) (0.08)

Transboundary PM2.5 (past 28-35 days) 0.61 0.62 0.42 0.39
(0.12) (0.12) (0.10) (0.10)

Transboundary PM2.5 (past 35-42 days) 0.69 0.70 0.50 0.47
(0.12) (0.13) (0.10) (0.10)

Transboundary PM2.5 (past 42-49 days) 0.45 0.45 0.28 0.24
(0.11) (0.11) (0.08) (0.08)

Transboundary PM2.5 (past 49-56 days) 0.60 0.61 0.46 0.43
(0.08) (0.08) (0.07) (0.07)

Transboundary PM2.5 (past 56-63 days) 0.28 0.29 0.20 0.20
(0.06) (0.06) (0.05) (0.05)

Transboundary PM2.5 (past 63-70 days) 0.05 0.05 -0.00 -0.00
(0.06) (0.06) (0.07) (0.06)

Observations 9,555,368 9,555,368 9,555,368 9,555,368
Dependent variable mean 618 618 618 618
Year-Month-City FE Yes Yes No No
Year-Month FE No No Yes Yes
Month-City FE No No Yes No
Month-Province FE No No No Yes
Year FE No No No No
Month FE No No No No
City FE Yes Yes Yes Yes
Day of week-City FE Yes Yes Yes No
Rainfall quartile-City FE Yes No Yes Yes
Temperature quartile-City FE Yes No Yes Yes
Rainfall quartile FE No Yes No No
Temperature quartile FE No Yes No No

Note: This table shows results for Column 1 in Table 3 with different choices of control variables. See notes in Table 3.
Column 1 in this table replicates Column 1 in Table 3, and we show results with different choices of control variables
in columns 2 to 4.
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Table A.9: Robustness Check for the Choices of Different Control Variables for the IV Estimation

(1) (2) (3) (4)

PM2.5 (past 0-7 days) 0.55 0.56 0.58 0.57
(0.29) (0.30) (0.31) (0.30)

PM2.5 (past 7-14 days) 0.73 0.73 0.76 0.73
(0.23) (0.24) (0.23) (0.23)

PM2.5 (past 14-21 days) 1.40 1.41 1.41 1.35
(0.35) (0.35) (0.38) (0.37)

PM2.5 (past 21-28 days) 1.33 1.37 1.37 1.32
(0.30) (0.31) (0.31) (0.30)

PM2.5 (past 28-35 days) 1.33 1.35 1.30 1.18
(0.28) (0.28) (0.34) (0.33)

PM2.5 (past 35-42 days) 1.85 1.89 1.79 1.63
(0.32) (0.32) (0.33) (0.32)

PM2.5 (past 42-49 days) 1.55 1.57 1.44 1.25
(0.35) (0.36) (0.39) (0.36)

PM2.5 (past 49-56 days) 2.36 2.38 2.22 2.03
(0.30) (0.31) (0.37) (0.35)

PM2.5 (past 56-63 days) 1.46 1.49 1.44 1.33
(0.23) (0.24) (0.29) (0.27)

PM2.5 (past 63-70 days) 0.05 0.06 0.07 0.03
(0.15) (0.15) (0.20) (0.19)

Observations 9,274,113 9,274,113 9,274,113 9,274,113
Dependent variable mean 617 617 617 617
KP F-stat 221 221 8 9
Year-Month-City FE Yes Yes No No
Year-Month FE No No Yes Yes
Month-City FE No No Yes No
Month-Province FE No No No Yes
Year FE No No No No
Month FE No No No No
City FE Yes Yes Yes Yes
Day of week-City FE Yes Yes Yes No
Rainfall quartile-City FE Yes No Yes Yes
Temperature quartile-City FE Yes No Yes Yes
Rainfall quartile FE No Yes No No
Temperature quartile FE No Yes No No

Note: This table shows results for Column 1 in Table 4 with different choices of control variables. See notes in Table 4.
Column 1 in this table replicates Column 1 in Table 4, and we show results with different choices of control variables
in columns 2 to 4.
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Table A.10: Robustness check of HYSPLIT to Choices of Different Starting Heights from South
Korea

Dependent variable: Hourly PM2.5 in South Korean cities
(1) (2) (3) (4) (5)

Hourly Transboundary PM2.5 (from 100m) 0.049
(0.003)

Hourly Transboundary PM2.5 (from 250m) 0.069
(0.002)

Hourly Transboundary PM2.5 (from 500m) 0.100
(0.003)

Hourly Transboundary PM2.5 (from 750m) 0.117
(0.003)

Hourly Transboundary PM2.5 (from 1000m) 0.110
(0.004)

Observations 1553456 1560982 1573289 1585100 1593754
KP F-stat 355 1023 1560 1551 978

Note: Standard errors, clustered by city, are reported in parentheses. All regressions include city-by-year-by-month
fixed effects, city-by-day of week fixed effects, city-by-rainfall quartile fixed effects, city-by-temperature quartile
fixed effects, and are weighted by city-level population. KP F-stat is Kleibergen-Paap rk Wald F statistic. The sample
includes the 50 cities with the highest number of deaths (in 2018) between March 2015 and December 2018.
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Table A.11: Dependent Variable: PM2.5 in China at the city-year-month-day level

(1) (2) (3) (4)

Annual trend -4.29 -2.52
(0.12) (0.16)

Annual trend ⇥ in-China ratio -8.70 -8.69
(0.98) (0.98)

Annual trend ⇥ Quartile 2 of in-China ratio -1.71 -1.71
(0.21) (0.21)

Annual trend ⇥ Quartile 3 of in-China ratio -1.70 -1.71
(0.28) (0.28)

Annual trend ⇥ Quartile 4 of in-China ratio -3.52 -3.51
(0.36) (0.36)

N 1328053 1328026 1328053 1328026
Mean of dependent variable 47.83 47.83 47.83 47.83
City FE Yes Yes Yes Yes
Time FE No Yes No Yes

Note: The in-China ratio is divided into quartile groups for columns (3) and (4). Quartile 1 has the lowest in-China
ratio. Standard errors, clustered by city, are reported in parentheses. The time fixed effect is at the level of year-month-
day. All regressions are weighted by city-level population. The sample includes all South Korean cities between
January 2015 and December 2019.
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Table A.12: Dependent Variable: PM2.5 in China at the city-year-month-day level

(1) (2) (3) (4)

Annual trend -3.72 -1.81
(0.37) (0.19)

Annual trend ⇥ in-China ratio -5.60 -5.60
(1.78) (1.78)

Annual trend ⇥ Quartile 2 of in-China ratio -2.26 -2.25
(0.27) (0.27)

Annual trend ⇥ Quartile 3 of in-China ratio -2.41 -2.43
(0.33) (0.33)

Annual trend ⇥ Quartile 4 of in-China ratio -3.31 -3.30
(0.62) (0.62)

Annual trend ⇥ 2015 Crude Oil Production 0.02 0.02 0.02 0.02
(0.01) (0.01) (0.01) (0.01)

Annual trend ⇥ 2015 Coke Production -0.04 -0.04 -0.03 -0.03
(0.02) (0.02) (0.02) (0.02)

N 989924 989897 989924 989897
Mean of dependent variable 49.76 49.76 49.76 49.76
City FE Yes Yes Yes Yes
Time FE No Yes No Yes

Note: The in-China ratio is divided into quartile groups for columns (3) and (4). Quartile 1 has the lowest in-China
ratio. Standard errors, clustered by city, are reported in parentheses. The time fixed effect is at the level of year-month-
day. All regressions are weighted by city-level population. The sample includes all South Korean cities between
January 2015 and December 2019.
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Table A.13: Value of remaining life for each age group in South Korea

Age Group VSL

0 (infant) 509,122
1 � 9 519,632
10 � 19 542,066
20 � 29 569,630
30 � 39 559,651
40 � 49 488,678
50 � 59 366,400
60 � 69 233,030
70 � 79 124,647
80 � 89 57,094
90 � 99 23,995
100 � 109 10,200

Note: The values of remaining life for each group are obtained from Figure 3 in Murphy and Topel (2006). The figure
includes values of remaining life by sex for each age between 0 and 110, using the mean VSL value of $6.3 million.
These age-specific VSL estimates are averaged within each age group, divided by the mean VSL value of $6.3 million,
and then multiplied by the average South Korean VSL estimate obtained in 4.1. The VSL estimates are in 2019 US
dollars.
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Table A.14: Average economic indicators at province level in 2015
Group 1 Group 2 Group 3 Group 4

Average China arrival dummy in 2015 0.431 0.535 0.640 0.739
Average PM 2.5 in 2015 39.63 45.86 52.73 62.89
GDP in 2015 (Billion USD) 407.92 324.59 334.01 372.44
GDP per capita in 2015 (Thousand USD) 7.16 8.39 6.93 9.52
VA in primary industry (Billion USD) 34.00 24.45 31.98 29.17
VA in secondary industry (Billion USD) 182.27 137.71 150.19 147.00
VA in tertiary industry (Billion USD) 191.65 162.43 151.84 196.26
VA in agriculture forestry animal husbandry and fishery (Billion USD) 35.10 25.14 33.32 30.38
VA in industrial production (Billion USD) 154.23 115.52 126.60 124.55
VA in construction (Billion USD) 28.35 22.79 24.31 23.00
VA in wholesale (Billion USD) 40.08 34.11 28.98 39.45
VA in transportation and mailing (Billion USD) 16.66 13.70 14.42 20.53
VA in accomodation and food (Billion USD) 8.49 7.15 5.81 5.38
VA in finance (Billion USD) 28.25 24.65 21.45 30.32
VA in real estate (Billion USD) 23.42 19.74 19.44 22.07
VA in other industries (Billion USD) 73.35 61.80 59.68 76.76
Population in 2015 (Million) 53.77 37.94 42.00 44.48
Population (Urban) in 2015 (Million) 30.17 21.78 23.23 27.06
Population (Rural) in 2015 (Million) 23.60 16.16 18.76 17.42
Employment (Urban) in 2015 (Million) 6.52 4.92 5.75 6.16
Income per person (Thousand USD) 3.15 3.78 2.99 4.25
Income (Urban) per person (Thousand USD) 4.58 5.08 4.29 5.33
Income (Rural) per person (Thousand USD) 1.70 2.09 1.68 2.19
Spending per person (Thousand USD) 2.30 2.71 2.21 3.02
Spending (Urban) per person (Thousand USD) 3.13 3.51 3.04 3.66
Spending (Rural) per person (Thousand USD) 1.43 1.66 1.38 1.73
Export + Import in 2015 (Billion USD) 178.16 119.68 90.14 121.31
Export in 2015 (Billion USD) 114.72 71.60 54.43 49.64
Import in 2015 (Billion USD) 63.44 48.08 35.71 71.68
Electricity Supply in 2015 (Billion Kwh) 182.25 152.61 188.62 232.43
Electricity Supply (Hydro) in 2015 (Billion Kwh) 69.99 66.99 11.15 1.75
Electricity Supply (Thermal) in 2015 (Billion Kwh) 95.89 84.11 164.07 212.78
Electricity Demand in 2015 (Billion Kwh) 181.50 140.35 185.93 233.01
Coke production in 2015 (Million Ton) 5.69 8.02 16.30 38.70
Crude production in 2015 (Million Ton) 8.12 0.69 14.65 15.54
Petrol production in 2015 (Million Ton) 3.56 2.75 3.93 7.01
Kerosene production in 2015 (Million Ton) 2.21 1.34 0.93 1.67
Diesel production in 2015 (Million Ton) 6.03 4.17 5.53 12.75
Fuel oil production in 2015 (Million Ton) 0.61 0.32 0.65 2.11
Natural gas production in 2015 (Million Ton) 0.26 0.67 1.10 0.16
Coal consumption in 2015 (Million Ton) 94.66 82.66 156.71 237.89
Coke consumption in 2015 (Million Ton) 7.08 8.93 12.47 27.34
Crude consumption in 2015 (Million Ton) 14.18 13.75 17.84 32.84
Petrol consumption in 2015 (Million Ton) 4.49 5.07 3.62 4.55
Kerosene consumption in 2015 (Million Ton) 0.86 1.53 0.36 1.15
Diesel consumption in 2015 (Million Ton) 6.70 5.78 5.09 6.75
Fuel oil consumption in 2015 (Million Ton) 0.91 1.72 0.55 5.31
Natural gas consumption in 2015 (Million Ton) 0.44 0.71 0.72 0.75

Note: Provinces are divided into quartile groups based on their average in-China ratio. Group 1 has the lowest in-
China ratio. Economic data are sourced from the National Bureau of Statistics. Values are converted from CNY to
USD using an exchange rate of 6.227. VA = value added.
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Table A.15: Weighted average economic indicators at province level in 2015
Group 1 Group 2 Group 3 Group 4

Average China arrival dummy in 2015 0.426 0.527 0.638 0.744
Average PM 2.5 in 2015 39.07 52.62 58.73 65.96
GDP in 2015 (Billion USD) 549.90 476.69 539.68 500.40
GDP per capita in 2015 (Thousand USD) 7.62 8.58 7.96 8.39
VA in primary industry (Billion USD) 38.16 39.33 46.00 44.94
VA in secondary industry (Billion USD) 246.66 210.60 250.53 213.02
VA in tertiary industry (Billion USD) 265.07 226.76 243.15 242.45
VA in agriculture forestry animal husbandry and fishery (Billion USD) 39.38 40.42 47.96 46.87
VA in industrial production (Billion USD) 215.88 176.34 211.97 181.83
VA in construction (Billion USD) 31.27 35.20 39.34 31.90
VA in wholesale (Billion USD) 56.03 47.42 49.01 56.56
VA in transportation and mailing (Billion USD) 21.45 19.61 22.93 27.65
VA in accomodation and food (Billion USD) 11.21 10.72 9.57 6.95
VA in finance (Billion USD) 39.88 31.88 32.95 32.10
VA in real estate (Billion USD) 34.23 27.14 32.76 27.59
VA in other industries (Billion USD) 100.57 87.96 93.18 88.95
Population in 2015 (Million) 66.07 59.54 62.46 62.73
Population (Urban) in 2015 (Million) 39.46 33.01 34.63 36.17
Population (Rural) in 2015 (Million) 26.61 26.53 27.84 26.56
Employment (Urban) in 2015 (Million) 8.76 7.24 8.82 7.71
Income per person (Thousand USD) 3.37 3.89 3.25 3.78
Income (Urban) per person (Thousand USD) 4.75 5.15 4.54 5.00
Income (Rural) per person (Thousand USD) 1.78 2.22 1.86 2.02
Spending per person (Thousand USD) 2.47 2.78 2.33 2.61
Spending (Urban) per person (Thousand USD) 3.29 3.52 3.13 3.33
Spending (Rural) per person (Thousand USD) 1.49 1.79 1.47 1.54
Export + Import in 2015 (Billion USD) 316.90 137.32 165.57 132.15
Export in 2015 (Billion USD) 201.17 91.47 100.88 68.04
Import in 2015 (Billion USD) 115.73 45.86 64.68 64.11
Electricity Supply in 2015 (Billion Kwh) 220.32 238.21 246.46 294.89
Electricity Supply (Hydro) in 2015 (Billion Kwh) 67.27 113.05 9.68 1.59
Electricity Supply (Thermal) in 2015 (Billion Kwh) 128.01 120.43 223.24 273.88
Electricity Demand in 2015 (Billion Kwh) 241.82 201.97 263.30 314.68
Coke production in 2015 (Million Ton) 5.35 8.74 21.44 44.36
Crude production in 2015 (Million Ton) 11.28 0.40 12.53 15.59
Petrol production in 2015 (Million Ton) 4.52 2.84 4.14 11.43
Kerosene production in 2015 (Million Ton) 3.04 1.05 1.40 1.73
Diesel production in 2015 (Million Ton) 7.69 4.48 5.20 19.62
Fuel oil production in 2015 (Million Ton) 0.87 0.41 1.00 3.96
Natural gas production in 2015 (Million Ton) 0.45 1.24 0.77 0.13
Coal consumption in 2015 (Million Ton) 107.79 111.72 197.67 295.59
Coke consumption in 2015 (Million Ton) 7.28 11.17 19.91 38.38
Crude consumption in 2015 (Million Ton) 20.28 14.74 20.24 47.27
Petrol consumption in 2015 (Million Ton) 5.92 6.76 5.53 5.38
Kerosene consumption in 2015 (Million Ton) 1.17 1.60 0.54 0.84
Diesel consumption in 2015 (Million Ton) 8.35 7.57 6.51 8.79
Fuel oil consumption in 2015 (Million Ton) 1.46 1.79 0.75 10.90
Natural gas consumption in 2015 (Million Ton) 0.59 0.86 0.91 0.75

Note: Provinces are divided into quartile groups based on their average in-China ratio. The average for each group
is weighted by province population. Economic data are sourced from the National Bureau of Statistics. Values are
converted from CNY to USD using an exchange rate of 6.227.
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