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Asymmetric Incentives in Subsidies:  
Evidence from a Large-Scale Electricity Rebate Program†

By Koichiro Ito*

Many countries use substantial public funds to subsidize reductions 
in negative externalities. Such policy designs create asymmetric 
incentives because increases in externalities remain unpriced. I 
investigate the implications of such policies by using a regression 
discontinuity design in California’s electricity rebate program. 
Using household-level panel data, I find that the incentive produced 
precisely estimated zero treatment effects on energy conservation in 
coastal areas. In contrast, the rebate induced short-run and long-run 
consumption reductions in inland areas. Income, climate, and air 
conditioner saturation significantly drive the heterogeneity. Finally, 
I provide a cost-effectiveness analysis and investigate how to improve 
the policy design. (JEL D12, D62, H76, L94, L98, Q48)

In economic theory, negative externalities can be corrected by Pigouvian taxes 
that internalize external costs (Pigou 1924). However, taxpayer opposition 

usually prevents the introduction of such taxes in practice. Alternatively, regula-
tors use substantial public funds to subsidize economic activities that presumably 
induce reductions in negative externalities. For example, many countries have 
failed to introduce a carbon tax on greenhouse gas emissions and decided to pro-
vide large subsidies for energy conservation and pollution abatement.1 Likewise, 
regulators usually provide subsidies for smoking cessation and public transporta-
tion in lieu of high taxes on smoking and traffic congestion.2

1 The American Recovery and Reinvestment Act of 2009 provided $17 billion for energy conservation pro-
grams. US electric utilities spent $26 billion on energy efficiency programs in 1994–2011, and annual spending has 
been continuously increasing since 2003 (US Energy Information Administration 2013). 

2 Many countries provide subsidies for energy-efficient appliances (Davis, Fuchs, and Gertler 2014; Boomhower 
and Davis 2014), energy-efficient vehicles (Gallagher and Muehlegger 2011, Sallee 2011, Mian and Sufi 2012, 
and Sallee and Slemrod 2012), and reductions in energy consumption (Reiss and White 2008, Wolak 2010,
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Such subsidies, however, often create asymmetric incentives because increases 
in negative externalities remain unpriced. With this asymmetry, these policies may 
not be able to correct all negative externalities if the marginal decisions of many 
individuals are unaffected by the subsidy incentive. This adverse effect contrasts 
with the theory underlying Pigouvian taxation, which aims to equalize the private 
and social marginal costs for all individuals. Despite the importance of this problem, 
there is limited empirical evidence on this question largely because empirical anal-
ysis is hampered by the “additionality” problem (Joskow and Marron 1992)—some 
of the observed behavior are not “additional” if they would occur in the absence 
of subsidy incentives. It is, therefore, misleading to evaluate a subsidy program’s 
causal effect simply by analyzing those who received a subsidy, although many 
previous studies take this approach.3

In this paper, I investigate these problems by applying a regression discontinuity 
(RD) design to a large-scale electricity rebate program in California. For the sum-
mer of 2005, California residents received a 20 percent discount on their monthly 
electricity bills if they reduced their electricity usage by 20 percent compared to 
the summer of 2004. The program’s eligibility rule provides two advantages for my 
empirical strategy. First, to be eligible for the program in summer 2005, custom-
ers had to open their electricity account before a cutoff date in 2004. A strategic 
manipulation of the account opening dates was impossible because until the spring 
of 2005 the program was not announced. This rule created a sharp discontinuity in 
the treatment assignment between customers who opened their accounts before and 
after the cutoff date. Second, all eligible customers were automatically enrolled in 
the program, preventing the self-selection problem, which presents a major chal-
lenge in previous studies.4

I obtained the administrative data on customer-level monthly electricity billing 
records from the electric utilities that administered the rebate program. Compared to 
survey data, the full administrative billing records have the advantages of measure-
ment accuracy and the comprehensive coverage of customers. The data also include 
each customer’s nine-digit zip code, which I match with demographic and weather 
data to investigate potential heterogeneity in response to the subsidy incentive.

Using the RD design, I first estimate the rebate program’s local average treatment 
effect (LATE). I find that the rebate incentive reduced electricity consumption by 
4 percent in inland areas in California, where the summer temperatures are per-
sistently high and the income levels are relatively low. Moreover, this conserva-
tion effect continued during the summers of 2006, 2007, and 2008. In contrast, I 

and Borenstein 2013). Carbon offset programs, such as the United Nations’ clean development mechanism, give 
firms credits if they reduce their pollution relative to a business-as-usual baseline level (Sutter and Parreño 2007, 
Schneider 2007, and Duflo et al. 2013). Financial incentives for smoking cessation are becoming a key policy 
instrument (Volpp et al. 2009). Congestion pricing is still rarely implemented in the US transportation system, 
and the federal and state governments use substantial public funds to subsidize public transit to address congestion 
(Anderson 2014). 

3 Joskow and Marron (1992) argue that many policy evaluations of utility conservation programs fail to take into 
account the additionality problem. Boomhower and Davis (2014) studies how this problem affects the cost-effec-
tiveness of an energy-efficient appliance subsidy program in Mexico. 

4 In most utility conservation programs, consumers opt-in to the programs (Joskow and Marron 1992). This 
opt-in participation creates a self-selection bias because participants in the program are likely to be different from 
nonparticipants. 
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find precisely estimated zero treatment effects in coastal areas, where the summer 
temperatures are moderate and the income levels are relatively high. To explore 
what drives the heterogeneity in the treatment effects, I estimate the interaction 
effects between the treatment variable and climate conditions and those between 
the treatment variable and income levels. The results from the regressions suggest 
that the treatment effect increases by 0.15 percentage points as the average tem-
perature increases by 1 degree Fahrenheit and decreases by 0.029 percentage points 
as income levels increase by 1 percent. I also use air conditioner saturation data to 
show that higher air conditioner saturation rates result in larger treatment effects.

The asymmetric subsidy structure introduces the possibility that the response to 
the subsidy differs between households whose consumption is close to the target 
level of consumption and households whose consumption is far from the target. To 
test whether the asymmetric incentive creates a “giving-up” effect for consumers 
far from the target level, I estimate the quantile treatment effects on the changes in 
consumption. I find that most of the treatment effects come from households who 
are closer to the target level of consumption and that the treatment effect is not sig-
nificantly different from zero for consumers who are far from the target level. This 
finding provides evidence that the asymmetry in the subsidy schedule weakens the 
incentive for conservation when compared to a simple Pigouvian tax.

An advantage of RD designs is that these require relatively weak identification 
assumptions to estimate LATE. However, RD designs generally do not provide aver-
age treatment effects (ATE) (Angrist and Rokkanen 2012). In my research design, 
the RD estimates come from customers who opened an electricity account about a 
year before the treatment period began. An important question is whether the treat-
ment effect differs between my RD sample and the customers who opened accounts 
earlier. To address this point, I use a method that combines an RD design with three-
way fixed effects. This method estimates the ATE with one additional identification 
assumption. In general, residential electricity consumers have a small positive trend 
in their electricity consumption after they open accounts. This trend is translated 
into a small trend component in my running variable for the RD design. To estimate 
the ATE, I assume that the positive trend in consumption is the same for customers 
who opened accounts on a certain date and those who opened accounts on the same 
day during the previous year. With this assumption, I can isolate the small positive 
trend from my RD design and estimate the ATE. I use this method to estimate the 
ATE for consumers who opened accounts 90 days, 180 days, 1 year, 2 years, 3 years, 
and 4 years before the eligibility cutoff date. I find that the difference between the 
ATE and the LATE is small and statistically insignificant. This finding suggests that 
the RD estimates are not significantly different from the treatment effects for con-
sumers who opened accounts earlier than those included in my RD sample.

This paper’s findings provide several important policy implications. First, asym-
metric incentives created by subsidy programs are likely to weaken the incentives 
to reduce negative externalities. The evidence of zero treatment effects in coastal 
areas is consistent with the theoretical prediction that consumers do not respond to 
the asymmetric incentive at all if the price elasticity is below a cutoff level. Second, 
the difference between my RD estimates and naïve estimates of the treatment effect 
shows that the additionality problem is a central concern in evaluations of subsidy 
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programs (Joskow and Marron 1992, and Boomhower and Davis 2014). While my 
RD estimates show precisely estimated zero causal effects in coastal areas, the naïve 
estimates that ignore the additionality problem indicate that a significant number 
of consumers responded to the incentive. This result provides evidence that careful 
empirical analysis is critical for evaluating energy conservation programs (Allcott 
and Greenstone 2012). This is particularly important for recent US energy policy 
because public spending for energy conservation programs has been growing rapid-
ly.5 Finally, my analysis of the program’s cost-effectiveness suggests that the hetero-
geneous treatment effects result in quite different levels of costs among coastal areas 
(94.5 cents per kWh reduction) and inland areas (2.5 cents per kWh reduction). 
However, because substantial rebates were paid to customers in the areas in which 
I find nearly zero treatment effects, the overall program cost is 17.5 cents per kWh 
reduction and $381 per ton of carbon dioxide reduction, which is unlikely to be suf-
ficiently cost-effective to reduce negative externalities for a reasonable range of the 
social marginal cost of electricity.

I.  Conceptual Framework

A. The Asymmetric Incentive Structures of Conservation Subsidies

In this section, I use a simple framework to characterize the theoretical predic-
tions of consumer behavior in the presence of subsidies for energy conservation. 
Suppose that consumers have quasilinear utility functions ​u(​y​ i​​, ​n​ i​​)  =  v(​y​ i​​) + ​n​ i​​​ for 
electricity consumption ​​y​ i​​​ and a numeraire consumption good ​​n​ i​​​. Consumers with 
income ​​I​ i​​​ and electricity price ​p​ maximize ​v(​y​ i​​) + ​I​ i​​ − p​y​ i​​​ and consume ​​y​ 0​​​ , where ​
v′(​y​ 0​​)  =  p​.

Suppose that regulators consider that electricity price ​p​ does not properly reflect 
the social marginal cost of electricity. For example, ​p​ may not reflect the nega-
tive environmental externalities from generating electricity or may not reflect the 
higher marginal cost of supplying electricity when the system faces a supply short-
age. The first-best solution is to increase the price by the cost of the externalities ​τ​. 
That is, increasing the electricity price by ​τ​ lets consumers choose ​​y​​ ∗​​, where ​v′(​y​​ ∗​) 
=  p + τ​.6

However, regulators often prefer to implement conservation subsidies instead of 
introducing a price increase. In conservation subsidy programs, regulators first deter-
mine the rebate baseline consumption ​​b​ i​​​ , which is usually a function of consumer ​i​’s 
past consumption level. Then, they offer a subsidy based on ​​b​ i​​​ and ​​y​ i​​​. For example, 

5 For example, the American Recovery and Reinvestment Act of 2009 provided $17 billion for energy conser-
vation programs. US electric utilities spent $26 billion dollars on energy efficiency programs in 1994–2011, and 
the annual spending has been continuously increasing since 2003 (US Energy Information Administration 2013). 

6 The constant Pigouvian tax ​τ​ is the first-best solution given the assumption that electricity users are homoge-
neous in the externalities they generate. For example, the marginal cost of supplying electricity is generally higher 
in peak hours than during off-peak hours. Suppose that the marginal price ​p​ does not reflect this time-varying mar-
ginal cost. Then, if some customers tend to use electricity more during peak hours, the externalities are higher than 
those of others, and therefore, their ​τ​ has to be set higher than that of others. 
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Figure 1 illustrates the subsidy schedule of the California 20/20 rebate program.7 
Consumers receive a 20 percent discount on their summer electricity bills if they 
consume 20 percent less than their baseline, which is their consumption in the sum-
mer month during the previous year. This subsidy creates a notch in the household’s 
budget constraint because it changes both the marginal and infra-marginal prices if 
consumers reach 80 percent of their baseline. In another type of conservation sub-
sidy program, consumers receive a marginal subsidy for each unit of their conser-
vation relative to a certain baseline level. Examples of this type of subsidy schedule 
include peak-time rebate programs in dynamic pricing (Wolak 2006, 2011, Faruqui 
and Sergici 2010, and Borenstein 2013). In these cases, the subsidy schedule creates 
a kink at the baseline rather than a notch. In both cases, consumers are subsidized 
for reducing consumption, but are not penalized for increasing consumption. This 
asymmetry creates important differences between such conservation subsidies and 
the first-best solution.

An inherent feature of such a subsidy schedule is that it creates asymmetry in the 
incentive to change consumption. In the case with the first-best solution, consumers 
have a simple price increase of ​τ​ , which gives all consumers the same change in the 
marginal incentive irrespective of where their consumption falls in the budget con-
straint shown in Figure 1. In contrast, the introduction of conservation subsidies cre-
ates different incentives for consumers depending on where they fall in the budget 

7 The figure shows the case that features a linear electricity price. In practice, residential electricity customers 
in California have increasing block pricing (Ito 2014). However, the insights from this section do not change 
with increasing block pricing because the rebate incentive changes both the infra-marginal and marginal prices 
by 20 percent. This implies that both the marginal and average prices change by 20 percent (note that residential 
electricity customers in California have zero or negligible fixed charges). 

Consumption 
of other goods 

Electricity
consumption 

A
B

0.8*b b

Budget constraint
with a simple
price increase 

Budget constraint
with subsidy 

Figure 1. Theoretical Predictions

Notes: This figure illustrates the theoretical predictions of how consumers behave when they are faced with the con-
servation subsidy schedule of the California 20/20 rebate program. The subsidy makes a notch in the budget con-
straint. If consumers respond to the expected price because of the uncertainty in consumption, the budget constraint 
based on the expected price becomes the dotted smooth line.



214	 American Economic Journal: economic policy�au gust 2015

constraint, how price-elastic they are, and how much uncertainty in consumption 
they have.8

B. Theoretical Predictions of Consumer Behavior

I begin with a simple case that makes two assumptions which may not be real-
istic in practice: (a) consumers have no uncertainty about their consumption, and 
(b) their baseline ​​b​ i​​​ is set reasonably close to ​​y​ 0​​​ , which is their optimal consumption 
in the absence of the subsidy incentive.

First, consumers do not respond to the subsidy incentive at all if the price elas-
ticity in absolute value is smaller than a certain cutoff level. To illustrate this point, 
suppose that consumers have a quasilinear and iso-elastic utility function, ​u(​y​ i​​, ​n​ i​​) 

= ​ α​i​​ · ​ 
​y​ i​ 1+1/e​

 _____ 
1 + 1 / e ​ + ​n​ i​​​ , where ​​α​i​​​ is a heterogeneous taste parameter and ​e  ≤  0​ is a 

constant price elasticity. In Figure 1, I illustrate two indifference curves, ​A​ and ​B​ , 
with ​|​e​ B​​|  >  |​e​ A​​|​. With inelastic price elasticity ​​e​ A​​​ , households make no change in 
their consumption levels because the indifference curve does not reach the notch 
point. Price elasticity ​​e​ B​​​ is the minimum elasticity required for consumers to change 
their consumption. This prediction implies that the subsidy incentive induces no 
change in consumption when the price elasticity is smaller than ​|​e​ B​​|​ in absolute 
value. This result contrasts with the result in the first-best solution. When consumers 
have a simple price increase of ​τ​ , the new budget constraint in the figure would have 
a steeper slope. Accordingly, all consumers would reduce consumption based on the 
new slope.

Second, given assumptions (a) and (b), there should be a bunching of consumers 
if the price elasticity is larger than ​|​e​ B​​|​ in absolute value. In Figure 1, all indifference 
curves that have larger price elasticities than ​|​e​ B​​|​ would have the optimal consump-
tion at the notch point in the presence of the subsidy incentive.

However, in reality, assumptions (a) and (b) are unlikely to hold in the case of 
residential electricity demand. I begin with assumption (a). Electricity consumers 
have significant uncertainty about their monthly electricity consumption. When 
faced with this uncertainty, rational consumers do not respond to the exact non-
linear budget constraint (Saez 1999, Borenstein 2009, and Ito 2014). Instead, they 
incorporate the uncertainty and respond to the expected price schedule, which is 
presented as the smoothed dotted line in Figure 1. The response to the smoothed 
schedule changes the first and second predictions above. First, the price elasticity’s 
cutoff point has to be even larger than the standard case with no uncertainty. In the 
previous example, consumers who have price elasticity ​​e​ B​​​ no longer respond to the 
subsidy incentive. Second, because the smoothed schedule no longer has a notch, 
there can be no bunching of consumers even if the price elasticity is nonzero.

Finally, the subsidy’s incentive can be further weakened if the rebate baseline ​​b​ i​​​ 
is set far below ​​y​ i​ 0​​ , which is consumer ​i​’s optimal consumption in the absence of 
the subsidy. Conservation subsidy programs usually do not adjust ​​b​ i​​​ for changes 

8 Borenstein (2013) provides a detailed description of similar problems for peak-time rebate programs in 
dynamic electricity pricing. 
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in weather or idiosyncratic shocks to each consumer. As a result, if the base year’s 
weather is more moderate than the target year’s weather, consumers are more likely 
to have harder baselines to reach. Similarly, if consumers experience idiosyncratic 
negative shocks in consumption in the base year, they have harder baselines to reach. 
This endogenous baseline can introduce a “giving-up” effect because consumers 
whose electricity usage is far above the baseline consider the subsidy unachievable 
(Wolak 2010, and Borenstein 2013). Conversely, when consumers have consump-
tion shocks in the opposite direction, ​​b​ i​​​ can be closer to ​​y​ i​ 0​​. In this case, they reduce 
consumption by less than 20 percent because they are now closer to the cutoff point. 
That is, the endogenous baseline makes the marginal incentive depend on where the 
rebate baseline falls in the household’s budget constraint. These predictions contrast 
with the prediction for the first-best solution, which produces the same marginal 
incentive for all consumers.

In the following sections, I empirically test these theoretical predictions by apply-
ing a regression discontinuity design to the California 20/20 rebate program. In the 
next section, I describe the research design and data used in my empirical analysis.

II.  Research Design and Data

This section provides the institutional background and research design. First, I 
provide a brief history of the California 20/20 electricity rebate program. Second, 
I discuss evidence from existing studies and their empirical challenges. Finally, I 
describe how I address these challenges using a regression discontinuity design to 
analyze the effects of the California 20/20 rebate program in 2005.

A. The California 20/20 Electricity Rebate Program

The California 20/20 electricity rebate program was originally implemented by 
Governor Gray Davis during the 2001 California electricity crisis.9 To prevent rolling 
blackouts, the California Public Utility Commission (CPUC) ordered the state’s three 
largest investor-owned electric utilities (IOUs)—Pacific Gas and Electric (PG&E), 
Southern California Edison (SCE), San Diego Gas and Electric (SDG&E)—to offer 
customers financial incentives to reduce electricity consumption. Every month during 
June, July, August, and September in 2001 and 2002, customers received a 20 percent 
discount on their monthly electricity bill if their consumption was 20 percent lower 
than their consumption during the same month in 2000. With a slight change in the 
scheme, the CPUC ordered the same program in 2005. The original month-based 
rule was replaced by a summer-based rule. Customers received a 20 percent dis-
count on their entire summer bills if their consumption over the summer months was 
20 percent lower than their consumption over the summer months in 2004.10 This 
rebate program was among the largest electricity conservation rebate programs in the 

9 By August 2000, wholesale energy prices had more than tripled since the end of 1999, causing price spikes 
in retail electricity rates and financial losses to California electric utilities. See more details in Joskow (2001); 
Borenstein, Bushnell, and Wolak (2002); Borenstein (2002). 

10 Consumers received information about their total energy savings on their monthly bills and about how much 
additional energy savings were required to qualify for the rebate. 



216	 American Economic Journal: economic policy�au gust 2015

United States in terms of its expenditure and the number of customers who received 
rebates. In the 2005 program, about 8 percent of residential customers of the three 
IOUs received a rebate. The total rebate expenditure was about $25 million, exclud-
ing marketing and administrative costs.11

Despite the substantial expenditure, the program’s effectiveness was highly con-
troversial. Proponents have claimed that its simplicity makes it straightforward for 
customers to undertake energy conservation.12 It is politically more favorable to 
offer a rebate program rather than raise electricity prices because the economic 
burden is much less salient to customers.13 However, the 20/20 program scheme 
created two key concerns.14 First, the program did not incorporate differences in 
weather between the base and target years. If the target year happened to be cooler 
than the base year, many customers received a rebate simply because of the change 
in weather. Second, even if there was no significant difference in weather between 
the two years, many customers received a rebate because of random fluctuations in 
their electricity consumption. For example, customers who had a friend visit during 
the base year or customers who traveled during the target year could reduce their 
electricity consumption in the target year by 20 percent for reasons unrelated to their 
conservation efforts.

Table 1 shows data related to the two concerns. I use household-level con-
sumption data to calculate the fraction of customers who reduced their summer 
electricity usage by more than 20 percent between summers when there was no 
rebate program. From 2003 to 2004, the median customer reduced consumption by 
1.7 percent because in 2004 the summer was cooler than in 2003. More importantly, 
14.3 percent of customers reduced their consumption by more than 20 percent. This 
statistic suggests that 14.3 percent of customers would have received a rebate for 
reasons unrelated to their conservation efforts if a rebate program had been offered 

11 Table A.1 in the online Appendix shows more details about the scale of the 2005 rebate program. More 
customers received at least one rebate in 2001 and 2002 because the program was month-based. Reiss and White 
(2003) report that about 39 percent of SDG&E customers’ monthly bills qualified for a rebate in June, July, August, 
and September 2001. For the same 2001 rebate program, Goldman, Barbose, and Eto (2002) find that about 33 
percent of consumers received a rebate. 

12 For example, CPUC (2001) estimated that the program would help reduce energy consumption by up to 
3,500 gigawatt hours in total and by up to 2,200 megawatt hours during critical summer peak consumption periods. 

13 Although the rebate expenditure is eventually paid by customers through future price increases, this burden is 
usually much less salient than raising the electricity price. 

14 See Faruqui and George (2006) for details. 

Table 1—Changes in Customer-Level Consumption when There Was No Rebate Program 

Year
Weather

conditions
Median of the percent change  
in customer-level consumption

Percent of customers who had 
20 percent or more reductions

2003 to 2004 Cooler in 2004 −1.7 percent 14.3 percent
1999 to 2000 Warmer in 2000 7.7 percent 6.8 percent

Notes: This table shows the distribution of the percent change in customer-level electricity consumption between 
two summers in which no rebate program was in effect. I use customer-level monthly consumption data for summer 
billing months (June, July, August, and September billing months) in Southern California Edison (SCE). Note that 
although there was the California electricity crisis in 2000, SCE customers did not experience a price spike because 
their retail rates were capped (Ito 2014). 
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in 2004. The second row provides the same statistic for the warmer summer in 2000 
relative to 1999. As a result, the median customer increased consumption by 7.7 per-
cent. However, even in this case, 6.8 percent of customers reduced consumption by 
20 percent. This evidence implies that random fluctuations in electricity consump-
tion necessarily create substantial rebate expenditures in this program design.15

B. Using a RD Design to Address Empirical Challenges

In general, there are two fundamental challenges in evaluating the causal effect of 
rebate programs. First, many rebate programs are offered to self-selected customers. 
Evaluating this type of program is difficult because households that self-select into 
the program are likely to be different from other households in terms of observable 
and unobservable factors. Second, when a rebate program is offered to all custom-
ers, it eliminates self-selection bias but creates another challenge—there is no clean 
control group because all customers are affected. This lack of a clean control group 
makes it difficult to distinguish a program’s causal effect from other factors unre-
lated to the program.16

To address these challenges, I exploit a discontinuity in the eligibility rule for the 
California 20/20 rebate program in 2005. To be eligible for the program, households 
had to open their electricity account by the program’s eligibility cutoff date in 2004. 
For example, the eligibility cutoff date for Southern California Edison customers was 
June 5, 2004. Customers who opened electricity accounts on or before June 5, 2004 
received a notice in the spring 2005 and were automatically enrolled in the program. 
Customers who began their service after the cutoff date (e.g., June 6, 2004) were not 
eligible for the program in 2005 and did not receive the notice.17

The eligibility rule includes two additional key features. First, it was impossible 
for customers to anticipate the 2005 rebate program when they started their electricity 
service in 2004 since the program was only announced in the spring of 2005. It was, 
therefore, impossible for customers to strategically choose their start date in consid-
eration of the rebate program. Second, all eligible customers automatically partici-
pated in the program, which eliminated any self-selection bias. Finally, the electric 
utilities that administered the program strictly enforced the rules without exception.

The discontinuous eligibility rule generated an essentially random assignment 
of the program for customers who opened their accounts near the cutoff date. The 
program rules allow me to use a regression discontinuity design to estimate the 
program’s causal effect given the assumption that the conditional expectation of the 

15 This evidence implies that it is misleading to make conclusions about the program’s effectiveness simply 
by calculating the number of customers receiving a rebate or the total reduction in consumption achieved by these 
customers. Yet, such statistics are often used in utility company reports and newspaper articles. 

16 For example, researchers need to control for changes in the weather, changes in the electricity price, other 
conservation programs, and macroeconomic shocks. Previous studies acknowledge this difficulty in evaluating the 
original 20/20 rebate program in 2001 and the later program in 2005. For example, Reiss and White (2008) and 
Goldman, Barbose, and Eto (2002) note that it is particularly challenging to control for the effects of other con-
servation programs that were active during their study periods. For evaluating the 20/20 rebate program in 2005, 
Wirtshafter Associates (2006) uses survey data to adjust for factors unrelated to the program. The adjustment results 
in a wide range of the estimated effects: the cost per kWh savings range from 29 cents to $1 per kWh. 

17 Figure A.1 in the online Appendix graphically explains how this eligibility rule was applied. The cutoff date 
was June 1, 2004 for PG&E customers and June 30, 2014 for SDG&E customers. 
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outcome variable is smooth at the cutoff date. In the empirical analysis section, I 
provide more details about the empirical strategy.

C. Data

The primary data for this study come from the panel data of customer-level 
monthly electricity billing records for the three largest investor-owned electric 
utilities in California. Under a confidentiality agreement, Pacific Gas and Electric 
(PG&E), Southern California Edison (SCE), and San Diego Gas and Electric 
(SDG&E) provided the complete billing history for essentially all residential cus-
tomers in their service areas.18 I focus on SCE in this paper and present the results 
for the other two utilities in the online Appendix. The conclusions are consistent 
across all three utilities.19

The monthly records include each customer’s account number, premise ID, bill-
ing start and end dates, monthly consumption, monthly bill, tariff type, climate 
zone, and nine-digit zip code.20 The data also include each customer’s account 
opening and closing dates, which are key variables for my RD design. Each day in 
California, about 10,000 residential customers open electricity accounts—thus there 
are a substantial number of observations for fairly narrow bandwidths. I use the 
customers who opened their electricity accounts within 90 days before and 90 days 
after the cutoff date for my main estimation and examine the robustness with differ-
ent bandwidth choices.

The billing data do not include each customer’s address and demographic infor-
mation. To obtain demographic information, I match the nine-digit zip codes to 
census block groups from the 2000 US census data. I also use daily weather data 
from the Cooperative Station Dataset published by the National Oceanic and 
Atmospheric Administration’s National Climate Data Center.21 The dataset includes 
the daily minimum and maximum temperatures recorded at 370 weather stations in 
California. I match each household’s zip code with the nearest weather station by 
following the matching mechanism in Aroonruengsawat and Auffhammer (2011) 
and Chong (2012). Finally, I collect air conditioner saturation data from the 2003 
Residential Appliance Saturation Study (RASS) to examine whether the program’s 
treatment effects vary by air conditioner saturation.22

18 A very small number of customers are not individually metered in this area. The billing datasets include only 
individually metered customers. 

19 The three utilities provided a similar rebate program but the programs differed substantial differences in two 
elements. First, the eligibility cutoff dates were different. Second, the way they calculated the outcome variable 
was different. Because of these differences, I conduct my analysis separately for each utility. Details are provided 
in the Appendix. 

20 During my sample period, residential customers in California did not have smart meters. Therefore, it was not 
possible for customers to see their hourly consumption data. 

21 I thank Anin Aroonruengsawat, Maximilian Auffhammer, and Howard Chong for sharing the data. 
22 RASS was funded and administered by the California Energy Commission and is based on 21,920 individu-

ally metered California customers in 2003. The variable of air conditioner saturation provides the ratio of customers 
who own air conditioners at the five-digit zip code level. 
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III.  Empirical Analysis and Results

In this section, I first use a regression discontinuity design to estimate the pro-
gram’s local average treatment effect. Second, I examine heterogeneity in the treat-
ment effects by investigating how income and weather affect the treatment. Third, 
I estimate whether the nonlinearity in the subsidy schedule induces a “giving-up” 
effect for consumers who are far from the 20 percent target level. An important 
question raised from RD estimation in general is whether the treatment effects are 
different in my RD sample and the overall population. In the final part of this sec-
tion, I use a method that combines an RD design with three-way fixed effects to 
estimate the average treatment effect.

A. A Regression Discontinuity Design to Estimate LATE

I define customer i’s natural log of electricity consumption by ​​y​ it​​​ for billing 
month t before and during the California 20/20 program. Let ​​D​ i​​  =  1{i  ∈  treat-
ment group}​ , ​​D​ t​​  =  1{t  ∈  treatment period}​ , and ​​D​ it​​  = ​ D​ i​​ · ​D​ t​​​. If the treatment 
is randomly assigned, the program’s average treatment effect can be obtained by a 
fixed effect estimation,

(1)	​​ y​ it​​  =  α · ​D​ it​​ + θ​ ​i​​ + λ​ ​t​​ + ​u​ it​​, ​

by the ordinary least squares (OLS), where ​θ​ ​i​​​ is the customer fixed effects, ​λ​ ​t​​​ is the 
time fixed effects, and ​​u​ it​​​ is an error term. However, the treatment assignment was 
not random in the California 20/20 program. Instead, it was assigned by an eligi-
bility rule, ​​D​ i​​  =  1{​x​ i​​  ≤  0}​ , where ​​x​ i​​​ is customer ​i​’s account opening date relative 
to the eligibility cutoff date. Because the treatment variable is a function of ​​x​ i​​​ , the 
estimation in equation (1) is biased if ​​u​ it​​​ is correlated with ​​x​ i​​​. With the RD design, 
I can explicitly control for the smooth relationship between the running variable ​​x​ i​​​ 
and the dependent variable and can estimate the program’s local average treatment 
effects by using the discontinuity of ​​D​ it​​​ in ​​x​ i​​​ :

(2)	​​ y​ it​​  =  α · ​D​ it​​ + ​f​ t​​(​x​ i​​) + θ​ ​i​​ + λ​ ​t​​ + η​ ​it​​ .​

The identification assumption is that the error term ​​η​it​​​ has to be uncorrelated with 
treatment ​​D​ it​​​ conditional on a smooth control function ​​f​ t​​(​x​ i​​)​ and other covariates.

The customer fixed effects absorb the time-invariant effects of ​​x​ i​​​. Therefore, the 
potential confounding factors are the time-varying effects of ​​x​ i​​​. Consider ​​​y ̃ ​​it​​​ , which 
is consumption demeaned by customer fixed effects. In consumption data for res-
idential electricity, customers have a general tendency to gradually increase their 
electricity consumption after opening electricity accounts. This tendency creates a 
very small and smooth relationship between ​​​y ̃ ​​it​​​ and ​​x​ i​​​. Hence, I use a smooth control 
function ​​f​ t​​(​x​ i​​)​ to control for the relationship. Imbens and Lemieux (2008) describe 
two approaches to specifying ​​f​ t​​(​x​ i​​)​. The first approach is to include a flexible para-
metric function. The second approach uses a local linear regression with a triangular 
kernel to put more weight on data closer to the cutoff point. I use the first approach 
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for my main result, then use the second approach to show that my estimation is 
robust for both approaches. To avoid misspecifing ​​f​ t​​(​x​ i​​)​ as much as possible, I focus 
on the data close to the cutoff date. For my main result, I use customers who opened 
their accounts within 90 days before or after the cutoff date. I also use 60-day and 
120-day bandwidths to show the robustness.

B. Testing the Validity of the Regression Discontinuity Design

A threat to the validity of RD designs is that the identification assumption is vio-
lated if there is self-selection at the cutoff, although this is unlikely to be the case for 
my research design. In summer 2004, no households knew that the California 20/20 
program would be implemented in the following summer. Therefore, there was no 
way for customers to self-select by strategically choosing the opening date for their 
electricity account.

Still, it is important to examine if there is a discontinuous difference between 
customers around the cutoff date. To assess the validity of the RD design, I first plot 
the number of new accounts opened per day in Figure 2. The horizontal axis is the 
account opening date relative to the eligibility cutoff date, which is July 5, 2004. 
Every dot shows the mean number of new accounts per day over the 15-day band-
width. Every day about 1,500 customers opened accounts with SCE. The solid line 
shows the local linear fit and the dashed lines are the 95 percent confidence inter-
vals. Over the 90-day period, there is a slight upward trend in the number of new 
accounts, although the slope is not statistically different from zero. The figure shows 
that there is no discontinuous jump at the cutoff date.

Figure 2 plots the customer characteristics against the account opening date rela-
tive to the eligibility cutoff date. I match the nine-digit zip codes in the billing data 
with the census block group to obtain the demographic and housing characteristics. 
The figures include the mean over the 15-day bandwidth, the local linear fit, and its 
95 percent confidence intervals.23 None of the three variables show a statistically 
significant discrete jump at the cutoff date.

C. RD Estimates of the Program’s Treatment Effects

In RD estimation, graphical analyses play an important role in quantifying the 
magnitudes of the treatment effects as well as testing the validity of the identifica-
tion strategy. I begin by presenting graphical analysis and then show the regression 
results. In California, summer electricity consumption differs between coastal and 
inland climate areas. In coastal areas, consumers do not have or rarely use air con-
ditioners because the summer temperatures are moderate. In inland areas, however, 
consumers regularly use air conditioners because the summer temperatures are per-
sistently high.24 To analyze the rebate incentive’s heterogeneous treatment effects, 

23 Because the variables are from the 2000 US census at the census block group level, I cluster the standard 
errors at the census block group level. 

24 As a reference, I present cooling degree days (CDD) at the five-digit zip code level for August 2005 in 
Figure A.3 in the online Appendix. 
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I begin by examining the RD estimates for coastal and inland climate zones sepa-
rately, according to the climate zones defined by SCE. Then I use pooled data from 
all the climate zones to investigate whether heterogeneous treatment effects can 
be explained by differences in observable variables such as climate conditions or 
household income levels.

Figure 3 presents a graphical analysis of the RD estimation based on the electricity 
usage recorded on account statements for September, the last month of the treatment 
period. Using the data for before and during the treatment period, I first estimate the 
demeaned consumption by ​​​y ̃ ​​it​​  = ​ y​ it​​ − ​​θ –​​i​​​. I then calculate the local mean of ​​​y ̃ ​​it​​​ for 
each 15-day bandwidth over the running variable ​​x​ i​​​. The local means are presented 
as dots in the figure. Finally, I fit a local linear regression and a quadratic function 
to estimate ​​f​ t​​(​x​ i​​)​ for each side of the cutoff date. The dashed line is the local linear 
fit and the solid line is the quadratic fit. On the horizontal axis, the treatment group 
is on the left-hand side of the cutoff date because customers who opened accounts 
before the cutoff date participated in the rebate program. Therefore, if the rebate 
incentive had an effect, there should be a discontinuous jump in the outcome vari-
able at the cutoff point.
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Figure 2. Testing the Validity of the Regression Discontinuity Design

Notes: The horizontal axis shows the account open date relative to the cutoff date of the program eligibility, which 
was June 5, 2004. Each dot shows the local mean with a 15-day bandwidth. The solid line shows the local linear 
fit and the dashed lines present the 95 percent confidence intervals. The confidence intervals for the fitted lines for 
variables from census data are adjusted for clustering at the census block group level.
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Figure 3 provides important insights. First, there is a slight upward trend in ​​​y ̃ ​​it​​​ 
over ​​x​ i​​​ , which is the account opening date relative to the cutoff date. This upward 
trend comes from the general tendency in residential electricity consumption data 
already noted—customers tend to increase their usage gradually after they open their 
accounts. Because ignoring this relationship creates an estimation bias for the treat-
ment effect, it is important to control for the trend. The fitted lines of the local linear 
regression and the quadratic regression over ​​x​ i​​​ indicate that the RD estimates are 
likely to be robust between the local linear regression and the quadratic regression.

Second, panel B shows evidence that the rebate incentive had a significant effect 
on lowering electricity consumption in the inland climate zones. There is a clear 
discontinuous change in consumption between the treatment and control groups at 
the cutoff point. Visually, the treatment group’s usage is about 5 percent less than 
the control group’s consumption. In contrast, panel A suggests that the rebate incen-
tive did not significantly alter consumption in the coastal climate zones. There is no 
discontinuous change in consumption between the treatment and control groups at 
the cutoff point.

Table 2 presents the RD estimates for the effect of subsidy incentives on energy 
conservation. In columns 1 and 3, I estimate the program’s overall treatment effect 
during the entire treatment period.25 In columns 2 and 4, I allow the treatment 
effects to differ for each billing month in the treatment period. I report RD estimates 

25 The actual treatment billing months for the 20/20 rebate program were the June, July, August, and September 
billing months. However, because of the billing cycle systems, many May billing days fall in the calendar month 
of June. For example, if a customer’s May billing cycle starts on May 31, most of the billing days fall in June. If 
customers focus on the calendar months instead of their billing cycles, a treatment effect can appear in their con-
sumption for the May billing month. Therefore, I include the May billing month as a treatment period. To strictly 
focus on the actual treatment billing months, one can see the treatment effects for June through September. 
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Figure 3. The Effects of Subsidy Incentives on Energy Conservation in September 2005

Notes: This figure presents the RD estimates of the effect of subsidy incentives on energy conservation for the 
September 2005 billing period. The horizontal axis shows customers’ account opening date relative to the cutoff 
date for program eligibility, which was June 5, 2005. The vertical axis presents the log electricity consumption in 
September 2005, in which I subtract customer fixed effects by using the consumption data from billing months 
before the treatment period. Each dot shows the local mean with a 15-day bandwidth. The solid line shows the local 
linear fit and the dashed line shows the quadratic fit.
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with 90-day bandwidths and quadratic controls for ​​f​ t​​(​x​ i​​)​. Using different bandwidths 
and the local linear regression do not change my results, as I show in the Table 3. 
To adjust for serial correlation in the electricity consumption data, I cluster standard 
errors at the customer level.26

26 In fact, ignoring the serial correlation produces very small standard errors. 

Table 2—RD Estimates of the Effect of Rebate Incentives on Energy Conservation

Coastal climate zones Inland climate zones

  (1) (2)   (3) (4)

Treatment effect −0.001 −0.042
(0.002) (0.013)

Treatment effect 0.003 −0.034
  in May (0.003) (0.015)
Treatment effect −0.001 −0.055
  in June (0.003) (0.017)
Treatment effect 0.004 −0.041
  in July (0.004) (0.019)
Treatment effect −0.003 −0.037
  in August (0.004) (0.018)
Treatment effect −0.004 −0.056
  in September (0.003) (0.016)

Observations 2,540,472 2,540,472 208,537 208,537 

Notes: This table shows the RD estimates of the effect of rebate incentives on energy conservation. The dependent 
variable is the log of electricity consumption. I estimate equation (2) with a 90-day bandwidth and quadratic func-
tions to control for the running variable. The standard errors are clustered at the customer level to adjust for serial 
correlation.

Table 3—Robustness Checks: Alternative Bandwidths and Specifications

Coastal climate zones Inland climate zones

(1) (2) (3) (4) (5) (6)

Treatment effect 0.004 0.003 0.005 −0.034 −0.039 −0.029
  in May (0.004) (0.003) (0.004) (0.015) (0.014) (0.017)
Treatment effect −0.002 −0.001 −0.003 −0.055 −0.059 −0.05
  in June (0.004) (0.004) (0.004) (0.017) (0.016) (0.019)
Treatment Effect 0.004 0.005 0.005 −0.041 −0.039 −0.042
  in July (0.004) (0.004) (0.005) (0.019) (0.017) (0.022)
Treatment effect −0.004 −0.005 −0.003 −0.036 −0.034 −0.035
  in August (0.004) (0.004) (0.004) (0.018) (0.016) (0.020)
Treatment effect −0.005 −0.003 −0.004 −0.056 −0.053 −0.052
  in September (0.003) (0.004) (0.004) (0.016) (0.015) (0.018)

Controls for f(x) Local linear Quadratic Quadratic Local linear Quadratic Quadratic 
Bandwidth 90 days 120 days 60 days 90 days 120 days 60 days
Observations 2,540,472 3,325,388 1,707,589 208,537 237,264 162,067 

Notes: This table shows RD estimates with different bandwidth choices and alternative controls for the running vari-
able. The dependent variable is the log of electricity consumption. The standard errors are clustered at the customer 
level to adjust for serial correlation.
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In coastal climate zones, the treatment effects are essentially zero with tight stan-
dard errors. Because of the tightly estimated point estimates, the 95 percent confi-
dence intervals do not include 1 percent treatment effects, suggesting that the 20/20 
program did not have a significant effect on customers in coastal climate zones. In 
contrast, the subsidy incentive had a significant effect on electricity consumption 
in the inland climate zones. The overall treatment effect is about 4 percent and the 
treatment effect of each month ranges between 4 percent and 5 percent.27

Because I have data for several months before the treatment period began, a use-
ful robustness check is to produce the RD estimates for the billing months before 
the treatment period. Figure 4 presents the RD estimates of the difference in log 
consumption between the treatment and control groups for the billing months of 
January 2005 through October 2005. In the coastal climate zones, the RD estimates 
are essentially zero both before and during the treatment period. In inland climate 
zones, the RD estimates are not statistically different from zero before the treatment 
period. In contrast, the estimates during the treatment period suggest that the cus-
tomers in the treatment group reduced their usage by about 5 percent. This figure 
provides evidence that the reduction in consumption is unlikely to come from fac-
tors unrelated to the program.

Another important robustness check is to examine how the choice of bandwidths 
and the method to control for ​​f​ t​​(​x​ i​​)​ affects the estimates.28 In Table 3, I present RD 

27 I find similar results for PG&E and SDG&E customers, although the definitions of the running variable and 
outcome variables differ between the three companies (see the Appendix for details). In PG&E, I find nearly zero 
effects for coastal customers and 3 percent to 4 percent effects for inland customers. In SDG&E, the majority of 
customers are in coastal areas, and I find a nearly zero effects for them. 

28 Although many studies, including Lee and Lemieux (2010), recommend reporting a number of specifications 
to illustrate the robustness of the results, another approach is to use the Akaike information criterion (AIC), which 
provides guidance on the choice for the polynomial. In my RD estimation, the quadratic controls produce the low-
est AIC, although it is not substantially different from linear or third-order polynomial control functions. This is 
because the relationship between the running variable and the outcome variable is smooth and approximately linear 
in the data (see Figure 3). 
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Figure 4. The Difference in log Consumption between Treatment and Control Groups

Notes: This figure presents the RD estimates of the difference in log consumption between the treatment and control 
groups. Customer fixed effects are subtracted by using consumption data before January 2005. I use a 90-day band-
width and quadratic controls for the trend of the running variable, which is the same specification used to obtain my 
main estimation results shown in Table 2.
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estimates with 60-day and 120-day bandwidths and the RD estimates with the local 
linear regression. Consistent with the suggestive evidence presented in Figure 3, 
these estimates are not sensitive to the bandwidth choice or to the method used to 
control for ​​f​ t​​(​x​ i​​)​. While the standard errors change slightly when using different 
bandwidths, the RD estimates are fairly stable between different bandwidth choic-
es.29 In addition, using the local linear regression instead of quadratic controls does 
not significantly change the estimates.

D. Heterogeneity in the Treatment Effect

Income, Climate Conditions, and Air Conditioner Saturation.—In the previous 
section, I find significant treatment effects for inland customers and do not find sig-
nificant effects for coastal customers. This section explores what drives the rebate 
program’s heterogeneous treatment effects. In particular, I examine whether climate 
conditions, income differences, and air conditioner saturation can explain the het-
erogeneous treatment effects.

A significant difference between inland and coastal California is the summer cli-
mate. Summer temperatures are persistently high in inland areas but quite moderate 
in coastal areas.30 Inland customers, therefore, typically use air conditioners (AC) 
throughout the summer, while many coastal customers rarely use AC. It is likely to 
be a challenge for customers who do not use AC to reduce their summer electricity 
consumption by 20 percent. In contrast, if customers constantly use AC, a 20 percent 
reduction can be achieved by changing the temperature settings or the length of their 
AC usage.

Demographic characteristics are another significant difference between inland 
and coastal California. For instance, income levels tend to be higher in the coastal 
areas than the inland areas. Many previous studies of residential electricity demand 
find slightly larger price elasticity estimates for low-income customers (Reiss and 
White 2005). Because the 20/20 rebate program is essentially a price-discount 
rebate program, lower-income customers may be more likely to respond to the 
incentive if their price elasticity is larger than that of higher-income customers.

To examine how climate conditions and income levels affect the program’s treat-
ment effects, I pool data from all climate zones and estimate the interaction effects. 
First, I calculate the average temperature at the nine-digit zip code level by calcu-
lating the mean of the daily mean temperature for the summer days in 2004 and 
2005. Second, I obtain the median per capita income at the census block group 
level from the 2000 US census. Column 1 of Table 4 shows the RD estimate of 
the interaction term between the treatment variable and the average temperature 
in degrees Fahrenheit. The estimate implies that the treatment effect increases by 

29 As Figure 3 suggests, using even narrower bandwidths (30-day bandwidths, for example) also does not 
change the RD estimates. Narrower bandwidths result in larger standard errors compared to the estimates with the 
baseline bandwidths. 

30 Figure A.3 in the online Appendix shows the cooling degree days (CDD) by five-digit zip code areas. For 
example, the average daily maximum temperatures are 69, 71, 73, 74, and 74 degrees Fahrenheit for May, June, 
July, August, and September for Santa Barbara (which is in a coastal climate zone), which are quite moderate. In 
contrast, they are 96, 104, 108, 107, and 102 degrees Fahrenheit for May, June, July, August, and September for 
Palm Springs (which is in an inland zone), which are quite high. 
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0.15 percentage points with an increase in the average temperature of 1 degree 
Fahrenheit. The estimate in Column 2 implies that the treatment effect decreases 
by 0.029 percentage points with a 1 percent increase in income.31 These two inter-
action effects remain the same when both terms are included in the regression in 
column 3. Finally, I examine the interaction effect with the air conditioner satura-
tion. The 2003 RASS data provide the proportion of customers who own air con-
ditioners at the five-digit zip code level. Column 4 shows evidence that higher AC 
saturation rates result in larger treatment effects. Overall, these results indicate that 
climate conditions, income levels, and air conditioner saturation have statistically 
significant effects on the program’s treatment effect.

Nonlinearity in the Subsidy Schedule.—A theoretical prediction in Section II 
implies that the nonlinearity in the subsidy schedule may induce a “giving-up” 
effect. Even if a consumer has a large price elasticity, the consumer may not respond 
to the incentive at all if the consumption is far from the cutoff point required to earn 
the rebate. This implies that the treatment effect may not come from all consum-
ers equally. Consider ​Δ​y​ it​​​ , the change in log consumption from 2004 to 2005. If 
there is a giving-up effect, I expect the different parts of the distribution of ​Δ​y​ it​​​ will 
have different treatment effects. In particular, I would expect there to be no change 
in consumption for higher percentiles in the consumption distribution because the 
treatment intervention is likely to have no effect on these percentiles if there is a 
giving-up effect. To test the prediction, I estimate the quantile treatment effects in 
my RD design (Frandsen, Frölich, and Melly, 2012):

(3)	​ Δ​y​ it​​  =  α · ​D​ i​​ + f (​x​ i​​) + ​λ​t​​ + ​ϵ​it​​, ​

31 The income variable is the median income at the census block group level. Each census block group in my 
sample consists of about 500 households. The income variable from the census data may have a measurement error 
in the sense that I observe the median household income instead of each household’s income. This measurement 
error implies that the estimated interaction effects in the paper are possibly underestimated. If the income vari-
able includes a classical measurement error, my estimate of the interaction effect will be attenuated toward zero. 
Therefore, my estimate can be considered as a lower bound. 

Table 4—RD Estimates Interacted with Income, Climate, and Air Conditioner Saturation

(1) (2) (3) (4)

Treatment 0.095 −0.297 −0.199 −0.478
(0.051) (0.055) (0.077) (0.056)

Treatment × avg.temp.(°F) −0.0015 −0.0016
(0.0007) (0.0008)

Treatment × ln(income) 0.029 0.031 0.044
(0.005) (0.005) (0.003)

Treatment × air conditioner −0.014
(0.005)

Observations 2,749,009 2,749,009 2,749,009 2,749,009 

Notes: This table presents the RD estimates of the effect of rebate incentives on energy conservation interacted 
with income, climate conditions, and air conditioner saturation. The dependent variable is the log of electricity con-
sumption. I use a 90-day bandwidth and quadratic controls for the trend in the running variable. Income is at the 
census block group level. Average temperature and air conditioner saturation (the ratio of customers who own air 
conditioners) are at the five-digit zip code level. The standard errors are clustered at the customer level to adjust for 
serial correlation.
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where ​​D​ i​​  =  1{​x​ i​​  ≤  c}​. Note that this is a quantile regression on the changes in 
consumption—it estimates how the treatment intervention changes the distribution 
of the changes in consumption. I estimate the equation for the changes in consump-
tion during August and September for customers in inland climate zones.

Table 5 presents the quantile treatment effects for the 5th, 10th, 25th, 50th, 75th, 
90th, and 95th percentiles.32 The treatment effect is larger in the lower tails of the 
distribution for the change in consumption. In contrast, the treatment effect is not 
statistically significant in the median and the higher tails of the distribution. This 
evidence suggests that the treatment effect mainly comes from the lower tail of the 
distribution and that customers whose consumption is relatively far from the 20 per-
cent reduction target are likely to give up responding to the incentive. In theory, the 
rebate incentive can increase consumption in the left tail of the distribution because 
if consumers are sure to receive a rebate, the rebate program acts as a decrease in 
price for these consumers. I find a positive point estimate for the fifth percentile, but 
the estimate is too noisy in the tails of the distribution to be statistically different 
from zero.

E. Potential Long-Run Effects

While the rebate program was in effect only during the summer of 2005, the pro-
gram may have had a long-run impact on future summer electricity consumption.33 
Customers may have learned how to become more energy efficient and then reduced 
their subsequent electricity consumption during future summers. Another possibil-
ity, though probably less plausible, is that the program may have induced marginal 
consumers to undertake capital investments in energy-efficiency that pay off over 
multiple years. Because the electricity billing data do not include information on a 
household’s durable goods purchases, I cannot distinguish between the two poten-
tial effects. However, I can test for the overall long-run effects by using consumption 
data for the treatment and control groups in the summers of 2006, 2007, and 2008.

I use the RD estimation in equation (2) with one modification. Instead of using 
summer 2005, I use subsequent summers as a treatment period. For example, to 

32 Note that the customers with a 20 percent reduction in consumption fall near the 25th percentile. 
33 I thank a referee for suggesting this analysis. The billing data allow me to test the potential long-run effects 

for 2006, 2007, and 2008, which is the final year of the available data. 

Table 5—Quantile Regressions on the Change in log Consumption for Inland Climate Zones

p5 p10 p25 p50 p75 p90 p95

Treatment 0.034 −0.099 −0.078 −0.007 −0.020 −0.019 −0.025
(0.056) (0.035) (0.018) (0.018) (0.019) (0.033) (0.063)

Observations 37,914 37,914 37,914 37,914 37,914 37,914 37,914 

Notes: This table presents the quantile RD estimates of the effect of rebate incentives on energy conservation. The 
dependent variable is the change in the log of electricity consumption from 2004 to 2005. I use a 90-day bandwidth 
and quadratic controls for the trend in the running variable. The standard errors are clustered at the customer level 
to adjust for serial correlation.
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estimate the effect for the summer of 2006, I define ​​D​ it​​  =  1​ if ​i  ∈​ treatment group 
and ​t  ∈​ the summer of 2006, and ​​D​ it​​  =  0​ otherwise. From the dataset used for the 
main RD estimation, I exclude the data for the summer of 2005 and include the data 
for the summer of 2006. The rest of the procedure is the same as for the main RD 
estimation.

Table 6 shows the rebate program’s long-run effects. Consistent with the main 
RD estimation, I find nearly zero treatment effects for coastal customers. In contrast, 
I find long-run conservation effects for inland customers, resulting in about a 4 per-
cent reduction in consumption. Although the long-run effects are slightly different 
from the short-run effects, these are not statistically different at conventional signifi-
cance levels. The results imply that for inland customers the rebate program induced 
persistent conservation effects.34

F. Using an RD Design with Three-Way Fixed Effects to Estimate ATE

An advantage of RD designs is that these require relatively weak identification 
assumptions to estimate local average treatment effects. However, RD designs gen-
erally do not provide average treatment effects. For example, my RD estimates are 
the LATE for customers who opened accounts a year before the program began. Is 
the LATE different from the ATE for customers who opened accounts earlier? This 
is an important question because if possible the policy should be evaluated based 
on the entire affected population, and because the difference between the LATE and 
ATE is not obvious without empirical investigation.35

In RD designs, it is challenging to estimate the treatment effects for samples that 
are away from the treatment cutoff, although recent studies provide several potential 
approaches to address this important question (Jackson 2010; Angrist and Rokkanen 
2012). In my research design, ATE can be estimated by making an additional 

34 The persistent effects are consistent with the findings in Ito, Ida, and Tanaka (2014). In their randomized field 
experiment, consumers who received economic incentives continued to conserve energy after the treatment period 
ended. Ferraro, Miranda, and Price (2011) and Allcott and Rogers (2014) also find similar persistent effects on 
water and energy conservation from information about peers’ consumption. 

35 The difference between the LATE and ATE is not obvious because many factors can affect them in different 
directions. For example, one could expect that the ATE may be larger than the LATE (in absolute value) if cus-
tomers who had lived longer in their homes were less likely to move and therefore had a larger incentive to invest 
in energy efficiency in response to the program. However, such customers may have already made this investment 
prior to the program (because they had resided there longer). Then, the ATE may be smaller than the LATE because 
newer residents had a larger incentive to invest in response to the program. 

Table 6—Potential Long-Run Effects

Coastal Inland

2005 2006 2007 2008 2005 2006 2007 2008

Treatment effect −0.001 0.001 −0.002 0.002 −0.042 −0.040 −0.048 −0.043
(0.002) (0.003) (0.004) (0.004) (0.013) (0.018) (0.021) (0.022)

Notes: This table shows the RD estimates of the potential long-run effect of rebate incentives on energy conserva-
tion. The dependent variable is the log of electricity consumption. The treatment variable is the interaction of the 
treatment group and the summer of 2006, 2007, and 2008, which are one, two, and three years after the rebate pro-
gram. The standard errors are clustered at the customer level to adjust for serial correlation.



Vol. 7 No. 3� 229ITO: Asymmetric Incentives in Subsidies

identification assumption. I use a method that combines an RD design with three-
way fixed effects. The idea behind this method is similar to the approach used in  
Jackson (2010).

Recall that in my RD estimation there is a slight upward trend of the outcome 
variable over the running variable. As mentioned above, this trend comes from the 
general tendency for residential electricity customers to gradually increase their con-
sumption after opening electricity accounts. Consider that customer ​i​’s consumption 
can be modeled as ​y​ ​it​​  =  θ​ ​i​​ + λ​ ​t​​ + g(t − ​d​ i​​) + ​ϵ​it​​​ , where ​​d​ i​​​ is the account open-
ing date. Consumption depends on customer fixed effects, time fixed effects, and 
the growth of consumption ​g(t − ​d​ i​​)​. The actual functional form of ​g(t − ​d​ i​​)​ is 
unknown. Consider that customer ​A​ opened his account on the date of ​​d​ i​​​ in a year 
and that customer ​B​ opened her account on the exact same date in the previous year. 
The identification assumption that I make in this section is that ​g(t − ​d​ i​​)​ is common 
to customers ​A​ and ​B​.

To estimate the ATE, I make two datasets. The first dataset is the electricity con-
sumption data for summer 2005. This is the same dataset used for the main RD esti-
mation. Recall that the running variable (​​x​ i​​  = ​ d​ i​​ − c​) is the account open date (​​d​ i​​​) 
relative to the enrollment cutoff date (​c​ = June 5, 2004). I define a series of 10-day 
bins for the running variable. For ​j  = … , −20, −10, 0, 10, 20, … ,​ I construct bi​​n​ j​​​ ,  
which includes customers whose running variables satisfy ​j  < ​ x​ i​​  ≤  j + 10​. For 
example, ​​bin​ j=0​​​​​ includes customers who opened accounts between June 6 and 
June 15 in 2004.36

The second dataset is the electricity consumption data for the summer of 2004. 
For this dataset, I define the running variable by ​​x​ i​​  = ​ d​ i​​ − ​c​ 2003​​​ , where ​​c​ 2003​​​ is June 
5, 2003. Using this running variable, I define bi​​n​ j​​​ in the same way as the first data-
set. For example, ​​bin​j=0​​​​​​ includes customers who opened accounts in 2003 between 
June 6 and June 15. Thus, the second dataset can be considered a placebo dataset as 
if there was a rebate program for the 2004 summer based on an enrollment cutoff 
date in 2003.

Let ​​y​ isjt​​​ be electricity consumption for customer ​i​ in dataset ​s  =  {1, 2}​ in bin ​j​ for 
billing month ​t​.37 Define the treatment dummy variable by ​​D​ isjt​​​ , which equals one 
if ​s  =  1​ , ​j  <  0​ , and ​t  ∈​ treatment period. Pooling the first and second datasets, I 
estimate

(4)	​ y​ ​isjt​​  =  α · ​D​ isjt​​ + ​θ​i​​ + ​λ​st​​ + ​μ​jt​​ + ​η​isjt​​ .​

Given my identification assumptions, ​α​ provides the program’s ATE. I include 
three-way fixed effects: customer-level fixed effects (​​θ​i​​​), time fixed effects that are 
specific to each dataset (​​λ​st​​​), and those that are specific to each bin (​​μ​jt​​​). The idea is 
that ​​μ​jt​​​ controls for potential confounding effects of the running variable in a nearly 
nonparametric way given that the growth pattern of consumption is shared among 

36 Using a narrower bin size does not significantly change the estimation results. 
37 I define ​t​ for the first and second datasets as follows. Suppose that I set ​t​ = 0 for the June 2005 billing month 

for the first dataset. Then, ​t​ = 0 for the June 2004 for the second dataset. By defining ​t​ in this way, I can use bin 
fixed effects ​​μ​jt​​​ to control for the running variable in a nearly nonparametric way. 
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customers who opened accounts on a specific day and those who did so on the same 
day during the previous year.

I begin by estimating the ATE for customers with ​−180  ≤ ​ x​ i​​  ≤  90​. This esti-
mation includes customers who opened accounts in the period that was 180 days 
before and 90 days after the cutoff date.38 Similarly, I estimate the ATE for cus-
tomers with ​​x​ i​​  ≥  −365​ (one year before the cutoff date), ​​x​ i​​  ≥  −730​ (two years), ​​
x​ i​​  ≥  −1,095​ (three years), and ​​x​ i​​  ≥  −1,460​ (four years) to examine how the treat-
ment effects differ for customers who opened accounts earlier than those households 
used in my RD sample.

Table 7 presents the LATE and the ATE for inland climate zones. Panel A reports 
the overall treatment effects for all summer billing months and panel B reports the 
separate estimates for each month. As a reference, column 1 shows the LATE from 
the previous section. Column 2 shows the ATE for customers who opened accounts 
in the period that was 180 days before and 90 days after the cutoff date. The ATE 
and LATE are not statistically different, although their point estimates are slightly 
different. The standard errors are slightly tighter for the ATE because the ATE is 
estimated from a broader range of samples, while the LATE is estimated from the 
samples close to the eligibility cutoff date.

38 To understand the intuition, it is useful to consider the four groups that are included in the estimation: (1) 
the treatment group (whose account open dates were between January 5 and June 5, 2004), (2) the control group 
(between June 6 and September 5, 2004), (3) the placebo treatment group (between January 5 and June 5, 2003), 
and (4) the placebo control group (between June 6 and September 5, 2003). Bin fixed effects (​​μ​jt​​​) are used to control 
for the running variable given that the growth pattern of consumption is common between customers who opened 
accounts on a day and those who did so on the same day in the previous year. 

Table 7—Average Treatment Effects (ATE) for Inland Climate Zones 

Estimates:  
Bandwidth:

LATE
90 days

(1)

ATE
180 days

(2)

ATE
1 year
(3)

ATE
2 years

(4)

ATE
3 years

(5)

ATE
4 years

(6)

Panel A. All months
Treatment effect −0.042 −0.041 −0.043 −0.042 −0.037 −0.034

(0.013) (0.010) (0.009) (0.008) (0.008) (0.008)

Panel B. Each month
Treatment effect −0.034 −0.036 −0.037 −0.042 −0.036 −0.037
  in May (0.015) (0.011) (0.009) (0.009) (0.009) (0.008)
Treatment effect −0.055 −0.046 −0.050 −0.048 −0.041 −0.038
  in June (0.017) (0.013) (0.011) (0.010) (0.010) (0.010)
Treatment effect −0.041 −0.037 −0.039 −0.037 −0.030 −0.027
  in July (0.019) (0.013) (0.012) (0.011) (0.011) (0.010)
Treatment effect −0.037 −0.040 −0.041 −0.035 −0.030 −0.024
  in August (0.018) (0.013) (0.011) (0.010) (0.010) (0.010)
Treatment effect −0.056 −0.048 −0.053 −0.052 −0.050 −0.047
  in September (0.016) (0.012) (0.010) (0.009) (0.009) (0.009)

Observations 208,537 420,149 640,415 978,707 1,257,978 1,508,618

Notes: The dependent variable is the log of electricity consumption. Given the identification assumptions described 
in the main text, this estimation produces the average treatment effect (ATE) for the samples included in each esti-
mation. Standard errors are clustered at the customer level to adjust for serial correlation.
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In columns 2 through 6, I include the customers who opened accounts earlier than 
180 days before the cutoff date. For example, column 6 includes customers who 
opened accounts four years before the rebate program began. I find that the point 
estimates of the ATE are not statistically different from the LATE at conventional 
significance levels, although their point estimates are slightly different. The results 
imply that the program’s overall treatment effect is about a 4 percent reduction in 
consumption both for the RD sample and for customers who opened accounts ear-
lier than those included in the RD sample.39

IV.  Policy Implications

A. The Rebate Program’s Cost-Effectiveness

In the literature, evaluations of energy conservation programs usually report two 
measures of cost-effectiveness: (1) the program’s cost per unit of energy saved and 
(2) the program’s cost per ton of emissions abated (Joskow and Marron 1992, and 
Boomhower and Davis 2014). Although these are not direct measures of welfare, 
these provide a valuable starting point and are widely used in policy discussions. I 
provide these values below and discuss their welfare implications in the next section.

Table 8 shows the program’s cost-effectiveness based on the RD estimates of the 
effect of rebate incentives on energy conservation.40 The third row shows the direct 
cost for the rebate payment, which is the total rebate amount paid to customers. Note 
that this direct cost does not include indirect costs such as administrative and mar-
keting costs. This direct cost also does not include costs undertaken by households 
who reduced their energy consumption. Therefore, the cost-effectiveness measure in 
this analysis should be considered a lower bound of the program’s cost. The fourth 
row shows the estimated reductions in consumption based on the RD estimates. 

39 Similarly, I find that the ATE is not significantly different from the LATE for coastal customers. 
40 I use the LATE from my RD estimation. Using the ATE from the previous section does not significantly 

change the results because my ATE and LATE are not statistically different. 

Table 8—Program Cost per Estimated Reductions in Consumption and Carbon Dioxide 

Coastal Inland Total

Number of customers 3,190,027 299,178 3,489,205
Consumption in summer 2005 (kWh) 8,247,457,920 1,154,292,248 9,401,750,168
Direct program cost for rebate ($) 9,358,919 1,250,621 10,609,540
Estimated reduction (kWh) 9,908,840 50,605,714 60,514,555
Estimated reduction in carbon dioxide (ton) 4,459 22,773 27,232
Program cost per kWh ($/kWh)     0.945   0.025 0.175
Program cost per carbon dioxide ($/ton) 2,099 55 390
Program cost per carbon dioxide ($/ton) 2,090 46 381
  (Adjusted for noncarbon external benefits)

Notes: This table reports the cost-benefit analysis of the 20/20 program for SCE’s coastal areas, inland areas, and 
all service areas. Row 1 shows the number of residential customers who maintained their accounts in the summer 
of 2004 and 2005. Row 2 presents the aggregate consumption in the summer months. Row 3 reports the aggregate 
amount of rebate paid to customers. Row 4 shows the estimated kWh reduction from the treatment effect of the pro-
gram. Row 5 translates this reduction into the reduction in carbon emissions by using the average carbon intensity 
of electricity consumed in California, which is 0.9 lb per kWh according to California Air Resources Board (2011).
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The fifth row translates the estimates into reductions in carbon emissions by using 
the average carbon intensity of electricity consumed in California, which is 0.9 lb. 
per kWh (California Air Resources Board 2011). The sixth row shows the program 
cost per kWh of electricity saved. The seventh row provides the program cost per 
ton of carbon dioxide abated, which may be overestimated because noncarbon 
externalities are also abated (e.g., particulate reductions). In the final row, based on 
Greenstone and Looney (2012) I calculate the noncarbon external benefits, subtract 
these from the program cost, and divide the adjusted program cost by the abated 
carbon dioxide.41

The results provide important implications. First, the program’s cost-effective-
ness differs substantially between coastal and inland areas. In coastal areas, the pro-
gram is a very expensive way to reduce electricity consumption. This is because the 
program did not induce significant reductions in usage but paid substantial rebates 
to consumers who reduced their consumption for reasons unrelated to the program’s 
incentive. The program cost, 94.5 cents per kWh, is large relative to any reasonable 
range for the marginal cost of electricity. In contrast, the program cost per kWh 
reduction is much smaller in inland areas, where it costs 2.5 cents to obtain a kWh 
reduction in consumption.

Second, the overall program was unlikely to be cost-effective within a reasonable 
range of assumptions regarding the private and social costs of electricity. The overall 
program cost was 17.5 cents per kWh reduction. The average cost of electricity sup-
plied by SCE was 13.37 cents per kWh in 2005. To justify the program’s cost-effec-
tiveness by the externality from carbon emissions, the social cost of carbon has to be 
larger than $92 per ton of carbon dioxide. If I subtract the noncarbon external bene-
fits from the program cost, the social cost of carbon emissions has to be larger than 
$82 per ton of carbon dioxide, which is larger than most estimates in the literature 
(Greenstone, Kopits, and Wolverton 2011). In addition, this calculation does not 
include the program’s indirect costs such as administrative and marketing expenses. 
According to the study by Wirtshafter Associates (2006), SCE spent about $4 mil-
lion to administer and advertise the program. The overall program cost is 24.1 cents 
per kWh including the indirect costs.42

Note that I use the estimates for short-run treatment effects to calculate the 
cost-effectiveness shown in Table 8. For inland areas, I also find significant long-run 

41 Table 1 in Greenstone and Looney (2012) provides estimates for the noncarbon external cost from electricity 
generation from existing coal plants (34 cents/kWh) and natural gas plants (2 cents/kWh). In 2005, 33.6 percent 
of electricity consumed in California came from natural gas and 9.8 percent came from coal (California Energy 
Comission 2014). I assume that other types of power plants have zero external cost, although this assumption might 
be invalid when taking into account other external costs, such as the cost from potential nuclear accidents. With 
these numbers, the noncarbon external benefits from the estimated reductions in consumption are $39,739 (coastal), 
$202,950 (inland), and $242,689 (total). I subtract them from the direct program cost to calculate the adjusted pro-
gram cost. This adjustment does not change my results substantially because only a small amount of the electricity 
consumed in California comes from coal. 

42 An important caveat is that the California 20/20 rebate program provided a rebate for consumers based on 
their monthly electricity consumption. The marginal cost of electricity is generally higher in peak hours and lower 
in off-peak hours. If the reductions mostly come from peak hour usage, the benefit comes not only from reductions 
in emissions but also from savings of the relatively high marginal cost of electricity. In this case, the cost-effective-
ness would be better than in my calculation. On the other hand, if the reduction mostly comes from off-peak usage, 
the cost-effectiveness would be worse than in my calculation. The number of reductions that come from peak and 
off-peak hours cannot be quantified from the monthly billing data. 
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treatment effects for the summers of 2006, 2007, and 2008. How does the cost-effec-
tiveness change if I account for the long-run effects? Given a set of assumptions, I 
calculate the long-run cost-effectiveness for the inland areas.43 The estimates of the 
long-run treatment effects imply that the program produced reductions in electricity 
consumption by 156,305 GWh and carbon dioxide by 70,337 tons in the 4 years 
from 2005 to 2008. With a discount rate of 4 percent, the long-run program cost 
for the inland areas is 0.9 cents per kWh and $20 per ton of carbon dioxide. This 
calculation implies that it is important to consider the program’s potential long-run 
effects when conducting the cost-benefit analysis. However, even with accounting 
for the long-run considerations, the program’s overall cost is still expensive ($160 
per ton of carbon dioxide) because the long-run treatment effects were essentially 
zero in coastal areas.

B. Welfare Implications

The high program cost found in the previous section does not necessarily mean 
that the program is not welfare improving because the rebate expense can be con-
sidered a transfer between customers. The utility companies passed the cost to cus-
tomers by increasing the electricity price afterward.44 The rebate expense, therefore, 
can be considered a transfer from all customers to rebated customers through the 
electricity price.

Consider two simple cases. Suppose that customers pay a linear electricity price 
that is lower than the social marginal cost of electricity. In this case, the rebate 
program can improve social welfare even if there is no treatment effect. The rebate 
expense slightly increases the electricity price afterward and can improve welfare 
if the new price is closer to the social marginal cost of electricity. Conversely, if 
customers pay a linear electricity price that is higher than the social marginal cost 
of electricity, the rebate program is likely to lower welfare because there is a greater 
price distortion after the electricity price increases.

Increasing block pricing complicates the welfare analysis of the California 20/20 
program (Borenstein 2012, and Ito 2014). Here, the marginal price of electricity is an 
increasing step function of a household’s monthly consumption. That is, customers 
pay a higher marginal price when they consume more electricity during their billing 
month. In 2005 and 2006, the marginal prices for the first through fourth tiers were 
12, 14, 17, and 20 cents per kWh. A key question then becomes what is the correct 
social marginal cost of electricity? To estimate this, I make three assumptions. First, 
suppose that the long-run private marginal cost of electricity is equal to the average 
cost of electricity under the existing tariff schedule. Then, the private marginal cost 
is 13.37 cents per kWh for SCE in 2005. Second, suppose that the externality from 

43 Every year, about 15 percent of customers terminate their electricity accounts when they move. The reduc-
tions in consumption in future years come from customers who maintained the same electricity account. I use a dis-
count rate to compare the rebate expense in 2005 and benefits in future years. I use the Federal Reserve’s discount 
rate, which was 4 percent in the summer of 2005. 

44 Most utility conservation programs in the United States recover the cost by increasing the electricity price. 
This is a notable difference from the energy-efficient appliance replacement program in Mexico (Boomhower and 
Davis 2014), where the cost is paid by tax revenue. 
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carbon emissions is 0.95 cents and that the noncarbon externality is 0.4 cents per 
kWh.45 Then, the social marginal cost of electricity is 14.72 cents per kWh.

In the billing data, about half of the customers are in the first and second tiers 
and half are in the third and fourth tiers. Half the customers, therefore, pay marginal 
prices that are slightly lower than the social marginal cost, while the other half pay 
marginal prices that are significantly higher than the social marginal cost of elec-
tricity. In theory, the rebate program can improve welfare if the cost is recovered 
from the two lower tiers. However, in practice, California’s electric utilities have 
taken the opposite approach because of a regulatory constraint. After the 2000–2001 
California electricity crisis, regulators and state legislators were concerned about the 
impact of price increases on lower-income customers, and the first two tiers were 
virtually frozen. In fact, SCE increased only the third and fourth tier rates in 2006 
(from 17 to 23 cents and from 20 to 32 cents), while it did not change the first and 
second tier rates. It is therefore difficult to argue that the program improved social 
welfare unless the externality from electricity is substantially larger than the esti-
mates in the literature.

V.  Conclusion

Subsidy policies that intend to correct negative externalities often create asym-
metric incentives because increases in externalities remain unpriced. I study the 
implications of such asymmetric incentives by using a RD design for the California 
20/20 electricity rebate program. Using customer-level administrative data, I find 
precisely estimated zero causal effects in coastal areas and a significant 4 percent 
consumption reduction in inland areas. In addition, I find evidence that income, 
climate conditions, and air conditioner saturation significantly drive the heteroge-
neity and that asymmetric subsidy structures weaken incentives because consumers 
whose usage is far from the rebate target respond very little to the program.

The heterogeneous treatment effects result in the program’s cost-effectiveness 
being very different between coastal areas (94.5 cents per kWh reduction) and 
inland areas (2.5 cents per kWh reduction). However, because substantial rebates 
were paid to customers in the areas for which I find nearly zero treatment effects, 
the overall program cost was 17.5 cents per kWh reduction and $381 per ton of 
carbon dioxide reduction. Therefore, the cost of the program was unlikely to be 
effective in reducing externalities over a reasonable range of the social marginal 
cost of electricity.

This paper’s findings imply that one way to improve the program’s cost-effective-
ness is to target lower-income customers and customers in areas with high summer 
temperatures. Another important way to improve the program’s efficiency is to target 
consumption during peak hours, when the marginal cost of electricity is likely to be 
high. For the 2005 California 20/20 rebate program, regulators could not target peak 

45 I use Greenstone, Kopits, and Wolverton (2011) for the social marginal cost of a ton of carbon emissions ($21 
per ton), California Air Resources Board (2011) for the average carbon intensity of electricity consumed (0.9 lb. per 
kWh), and Greenstone and Looney (2012) for the noncarbon external cost for generating electricity from existing 
coal plants (34 cents/kWh) and natural gas plants (2 cents/kWh). In 2005, 33.6 percent of electricity consumed in 
California came from natural gas and 9.8 percent came from coal (California Energy Commission 2014). 
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hours because residential customers in California did not have smart meters, which 
record their hourly electricity consumption. Recently, a growing number of custom-
ers in many countries have gained access to smart meters, which makes it possible 
for regulators to target consumption in particular hours.46 This new technology can 
also be used to inform consumers about their real-time consumption, which is likely 
to enhance their response to economic incentives. However, even with smart meters, 
some of the fundamental problems characterized in this paper remain if regulators 
continue to provide asymmetric incentives that subsidize reductions in consumption 
but do not address increases in consumption.47
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