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We develop a framework to estimate willingness to pay for clean air
from defensive investments on differentiated products. Applying this
framework to scanner data on air purifier sales in China, we find that
a household is willing to pay $1.34 annually to remove 1 mg/m3 of air
pollution (PM10) and $32.7 annually to eliminate the pollution in-
duced by theHuai River heating policy. Substantial heterogeneity is ex-
plained by income and exposure to information on air pollution. Us-
ing these estimates, we evaluate various environmental policies and
quantify the value of recent air quality improvements since China de-
clared a war on pollution in 2014.
I. Introduction
Air quality is remarkably poor in developing countries, and severe air
pollution imposes a substantial health and economic burden on billions
of people. For example, the annual average exposure to fine particulate
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matter in China was more than five times higher than that of the United
States in 2013 (Brauer et al. 2016). Such severe air pollution causes great
negative impacts on various economic outcomes, including infant mortal-
ity ( Jayachandran 2009; Arceo, Hanna, and Oliva 2012; Greenstone and
Hanna 2014), life expectancy (Chen et al. 2013; Ebenstein et al. 2017), and
labor supply (Hanna and Oliva 2015). For this reason, policy makers
and economists consider air pollution to be one of the first-order obsta-
cles to economic development.
However, a great economic burden of air pollution does not necessarily

imply that existing environmental regulations are not optimal. Optimal
environmental regulation depends on the extent to which individuals
value air quality improvements—that is, their willingness to pay (WTP) for
clean air (Greenstone and Jack 2013). If WTP for clean air is low, the cur-
rent level of air pollution could be optimal because a social planner
should prioritize economic growth over environmental regulation. On
the other hand, if WTP is high, the current stringency of regulations
can be far from optimal. Therefore, WTP for clean air is a key parameter
when considering the trade-offs between economic growth and environ-
mental regulation. Despite the importance of this parameter, the eco-
nomics literature provides limited empirical evidence. This is primarily
because obtaining a revealed-preference estimate of WTP for clean air
is challenging in developing countries because of limited availability of
data and a lack of readily available exogenous variation in air quality
for empirical analysis.
In this paper, we provide among the first revealed-preference estimates

of WTP for clean air in developing countries. Our approach is based on
the idea that demand forhome-use air purifiers—amain defensive invest-
ment for reducing indoor air pollution—provides valuable information
for the estimation of WTP for air quality improvements. We begin by
developing a random-utility model in which consumers purchase air pu-
rifiers to reduce indoor air pollution. A key advantage of analyzing air pu-
rifiermarkets is that one of the product attributes—high-efficiency partic-
ulate arrestance (HEPA)—informs both consumers and econometricians
of the purifier’s effectiveness in reducing indoor particulate matter. The ex-
tent to which consumers value this attribute, along with the price elasticity of
demand, reveals their WTP for indoor air quality improvements.
We apply this framework to scanner data on market transactions in air

purifier markets in Chinese cities. At the retail store level, we observe
product-level information on monthly sales, monthly average price, and
detailed product attributes. The product attributes include the informa-
tion on each purifier’s effectiveness at reducing indoor air pollution. Our
data cover January 2006 through December 2014. The data set provides
comprehensive transaction records of 690 air purifier products for some
of the most polluted cities in the world. To our knowledge, this paper is
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the first study to exploit these transaction data in the Chinese air purifier
markets to examine consumers’ WTP for air quality. We also collect pollu-
tion data from air pollution monitors and microdata on demographics
from the Chinese census to compile a data set that consists of air purifier
sales and prices, air pollution, and demographic characteristics.
The primary challenge for our empirical analysis is that two variables in

the demand estimation—pollution and price—are likely to be endoge-
nous. To address the endogeneity of air pollution, we use a spatial regres-
sion discontinuity (RD) design, which exploits discontinuous variation
in air pollution created by a policy-induced natural experiment at the
Huai River boundary. The so-called Huai River heating policy provided
citywide coal-based heating for cities north of the river, which generated
substantially higher pollution levels in the northern cities (Almond et al.
2009; Chen et al. 2013). The advantage of this spatial RD approach is two-
fold. First, it allows us to use plausibly exogenous policy-induced variation
in air pollution. Second, this policy-induced variation in air pollution has
existed since the 1950s. This natural experiment provides long-run vari-
ation in air pollution, which enables us to examine how households re-
spond to long-lasting, not transitory, variation in pollution.
To address the endogeneity of prices, we combine two approaches.

First, we observe data frommanymarkets (cities) in China, and therefore
we are able to include both product fixed effects and city fixed effects.
These fixed effects absorb product-level unobserved demand factors and
city-level demand shocks. The remaining potential concern is product-
city-level unobserved factors that are correlated with prices by product
and city. We construct an instrumental variable, which measures the dis-
tance from each product’smanufacturing plant (or its port if the product
is imported) to each market, with the aim of capturing variation in trans-
portation cost, which is a supply-side cost shifter.
We begin by presenting visual and statistical evidence that the level of

air pollution (PM10) is discontinuously higher in cities north of the Huai
River by 24 mg/m3 during our sample period. Using the theoretical pre-
diction from our demand model, this discontinuity in air pollution im-
plies that if households value air quality, the log market share of HEPA
purifiers—purifiers that can reduce indoor particulate matter—should
be discontinuously higher in cities north of the river boundary relative to
non-HEPA purifiers. We show visual and statistical evidence that this the-
oretical prediction is consistent with the data. To estimate marginal WTP
for air quality, we use standard logit estimation and random-coefficient
logit estimation that allows for heterogeneity in preference parameters
for pollution and price. We find that marginal WTP for removing 1 mg/m3

of PM10 per year is $1.34 and WTP for removing the amount of PM10 gen-
erated by the Huai River policy is $32.7 per year. Our estimates are robust
to using a range of different bandwidths and local linear and quadratic
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estimation. We find that substantial heterogeneity is explained by house-
hold income—higher-income households have significantly higher mar-
ginal WTP for clean air compared with lower-income households.
Our study provides three primary contributions to the literature. First,

we develop a framework to estimate heterogeneity in WTP for environ-
mental quality from defensive investment on the basis of market transac-
tion data on differentiated products. Earlier studies on avoidance behav-
ior examine whether individuals exhibit avoidance behavior in response
to pollution exposure.1 A key question in the recent literature is whether
researchers can obtain monetized WTP for environmental quality from
defensive behavior. For this question, theoretical work in environmental
economics provides a useful insight; defensive investment onmarket prod-
ucts can be used to learn about the preference for environmental quality
(Braden and Kolstad 1991). However, few existing studies attempt to de-
velop a framework to connect this economic theory withmarket data.2Our
idea is that this connection can be made by extending a random-utility
framework that is commonly used for market share data analysis in indus-
trial organization. Ourmodel allows consumers to purchase differentiated
products to improve their environmental quality. The model also allows
for heterogeneous preferences for environmental quality and price elastic-
ity. An attractive feature of this approach is that the conventional random-
coefficient logit estimation (Berry, Levinsohn, and Pakes 1995; Nevo 2000)
can be applied to investigate heterogeneity inWTP for environmental qual-
ity. We believe that our framework can be useful formany other settings be-
cause market transaction data are increasingly available for a variety of
products inmany countries, includingdeveloping countries, through store-
and household-based scanner data.3
1 Earlier studies on avoidance behavior against pollution find that people do engage in
defensive investment against pollution. For evidence in the United States, see Neidell
(2009), Zivin and Neidell (2009), and Zivin, Neidell, and Schlenker (2011). For evidence
in China, seeMu and Zhang (2014) and Zheng, Sun, and Kahn (2015). For evidence in other
developing countries, see Madajewicz et al. (2007) and Jalan and Somanathan (2008). A key
question in the recent literature is whether researchers can estimate WTP for improvements
in environmental quality from observing defensive investment in markets.

2 There are two recent papers that are most relevant to our study in the sense that our
approach and the approaches taken by the following papers are broadly categorized by the
household production approach. Kremer et al. (2011) use a randomized control trial (RCT)
in Kenya to estimate the WTP for water quality. Deschenes, Greenstone, and Shapiro (2012)
usemedical expenditure data in the United States to learn about the cost of air pollution and
the benefit of air quality regulation.

3 There are a few more related studies. Berry, Fischer, and Guiteras (2012) and Miller
and Mobarak (2013) use RCTs to estimate WTP for water filters and cookstoves per se in-
stead of WTP for improvements in environmental quality. Consumer behavior in housing
markets is usually not considered to be avoidance behavior, but Chay and Greenstone
(2005) is related to our study in the sense that the authors provide a quasi-experimental
approach to estimate WTP for clean air.



willingness to pay for clean air 1631
The second contribution is that we provide among the first revealed-
preference estimates of WTP for clean air in developing countries. As em-
phasized by Greenstone and Jack (2013), WTP for environmental quality
is a key parameter for policy design, but well-identified estimates of this
parameter are barely available for air quality and,more generally, are quite
scarce for any environmental quality in developing countries. An impor-
tant exception is a seminal study by Kremer et al. (2011), which estimates
WTP for water quality in Kenya by a randomized experiment.While exper-
imental approaches provide many advantages, it is generally challenging
to create long-run variation in pollution for a broad representation of
the population in an experimental setting. Our quasi-experimental de-
sign provides variation in air pollution that lasted for an extended amount
of time and affected heterogeneous households in many cities. This re-
search design allows us to examine household responses to prolonged se-
vere air pollution for a heterogeneous set of households. For this reason,
we believe that our quasi-experimental approach is complementary to ex-
perimental approaches.4

Finally, our findings provide important policy implications for ongoing
discussions on energy and environmental regulation in developing coun-
tries. For example, China declared a “war on pollution” in 2014 to reduce
air pollution (Zhu 2014) and made a commitment to address global cli-
mate change in 2016, as featured by theNew York Times (Davenport 2016).
Because stringent environmental regulations are not costless, a key ques-
tion is whether the benefit of a policy exceeds its cost. In the policy impli-
cation section, we use our estimate to evaluate existing and counterfactual
environmental policies and quantify the value of the recent air quality im-
provements in China.
II. Air Pollution, Air Purifiers, and the Huai River
Policy in China
In this section, we provide background information on air purifier mar-
kets in China and the Huai River policy, which are key to our empirical
analysis.
A. Air Purifiers
A key advantage of analyzing air purifier markets is that one of the prod-
uct attributes—HEPA—informs both consumers and econometricians
about the purifier’s effectiveness at reducing indoor particulate matter.
4 In addition to our study, Freeman et al. (2017) and Barwick et al. (2018) are recent
studies that use quasi-experimental research design to estimate WTP for clean air in China,
although the focus of these papers is not long-run variation in air pollution.
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According to the US Department of Energy, a HEPA air purifier removes
at least 99.97% of particles that are 0.3 mm or larger in diameter (DOE
2005). It is even more effective for larger particles, such as PM2.5 (parti-
cles with a diameter of 2.5 mm or smaller) and PM10 (particles with a di-
ameter between 2.5 and 10 mm). Recent clinical studies find that the use
of HEPA purifiers in various settings provides improvements in health,
including reduced asthma symptoms and asthma-related health visits
among children, lower marker levels of inflammation and heart disease,
and reduced incidences of invasive aspergillosis among adults (Abdul Sa-
lam et al. 2010; Allen et al. 2011; Lanphear et al. 2011).
Consistent with the US Department of Energy standards, air purifier

manufacturers and retail stores in China explicitly advertise that a HEPA
purifier can remove more than 99% of particles that are 0.3 mmor larger.
In contrast, non-HEPA purifiers are not effective at reducing small parti-
cles, such as PM2.5 and PM10. Yet non-HEPA purifiers provide consumers
utility gains through attributes other thanHEPA because these attributes
are effective in removing other indoor pollutants. For example, many pu-
rifiers have a function called “activated carbon,” which absorbs volatile
organic compounds (VOCs)—one of the common indoor pollutants aris-
ing fromhouse renovations, remodelingmaterials, and new furniture. An-
other example attribute is “catalytic converter,”which is effective in remov-
ing formaldehyde as well as VOCs. Both HEPA and non-HEPA purifiers
generally come with these functions, and HEPA purifiers provide an extra
attribute that is specifically designed to reduce particulate matter.5
B. Huai River Policy and Its Recent Reform
In 1958, the Chinese government decided to provide a centralized heat-
ing system. Because of budget constraints, the government provided city-
wide centralized heating to northern cities only (Almond et al. 2009).
Northern and southern China are divided by a line formed by the Huai
River andQinlingMountains, as shown in figure 1. The government used
this line because the average January temperature is roughly 07C along
the line and the line is not a border for other administrative purposes
(Chen et al. 2013). Cities north of the river boundary have received cen-
tralized heating supply from the government during every winter, whereas
cities in the south have not.
The centralized heating supply in the north relies on coal-fired heating

systems. Two-thirds of heat is generated by heat-only hot water boilers for
one or several buildings in an apartment complex, and the remaining
5 One of the air purifier attributes, “air ionizer,” is sometimes claimed to have some ca-
pacity to reduce small particles, but the effectiveness is usually quite limited. For example,
a study by Health Canada finds that a residential ionizer removes only 4% of indoor PM2.5

(Wallace 2008).
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one-third is generated by combined heat and power generators for the
larger areas of each city. This system is inflexible and energy inefficient.
Consumers have nomeans to control their heat supply, and until recently
there has been no measurement of heat consumption at the consumer
level. The incomplete combustion of coal in the heat-generation process
leads to the release of air pollutants, particularly particulate matter. Be-
cause most heat is generated by boilers within an apartment complex,
the pollution from coal-based heating remains largely local. Almond
et al. (2009) find that the Huai River policy led to higher total suspended
particulate (TSP) levels in the north. Ebenstein et al. (2017) further find
that the higher pollution levels created by the policy led to a loss of 3 years
of life expectancy in the north.
The heating supply in the north has been consistent since the 1950s,

while the payment system under the policy underwent an important re-
form in 2003. Before 2003, free heating was provided to residents in the
north, and employers or local governments were responsible for the pay-
ment of household heating bills (World Bank 2005). The payment system
FIG. 1.—Huai River boundary and city locations. The line in the middle of the map
shows the Huai River–Qinling Mountains boundary. A color version of this figure is avail-
able online.
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was designed under the centrally planned economy under which the
public-sector employment dominated the labormarket. However, during
China’s transition to a market economy, heating bills became a practical
problem. The size of the private sector has increased dramatically since
the 1990s, and employers in the private sector have not been required
topayheatingbills. Additionally,manypublic-sector employees havemoved
out of public housing and purchased homes in the private market, which
complicated the payment of heating bills by public-sector employers.
In July 2003, the Chinese government issued a heating reform. The re-

form changed the payment system from free provision to flat-rate billing
(World Bank 2005). Individual households became responsible for the
payment of their own heating bills for each season, which consisted of
a fixed charge per square meter of floor area for the entire season, re-
gardless of actual heating usage. Whether a heating subsidy is provided
by employers varies by sector. In the public sector, former in-kind trans-
fers were changed to a transparent payment for heating added to the
wage. In contrast, private-sector employers were not explicitly required
to provide a heating subsidy to their employees. In the 2005 census, 21%
of the labor force was in the urban public sector in the 80 cities in our sam-
ple, suggesting that only a small percentage of employees receive a heating
subsidy following the reform.
Our analysis focuses on the period from 2006 to 2014, after the 2003

reform on heating billing. We now summarize the comparison of winter
heating between the north and the south. First, winter heating is provided
in the same way after the reform. The centralized citywide heating supply
in the north remains the same, where households have little option other
than the centralized coal-based heating that generates higher pollution
levels. In the south, households choose their own methods of staying
warm during the winter, which could include using the heating function
of air conditioners, space heaters, and heated blankets, among a myriad
of other options. Second, heating costs in the north have changed since
the 2003 reform. Northern households no longer enjoy free heating and
instead have to pay (in the absence of subsidy) all of their compulsory
centralized heating bills. On the other hand, households in the south
continue to pay for the heating methods of their choice. We collected
heating costs in 20 cities just north and just south of theHuai River bound-
ary and find that household heating costs in the north are comparable to—
or could even be higher than—those in the south.6
6 For example, in Xi’an, a city just north of the Huai River, the price of heating per
square meter in the winter is $3.90. For an apartment of 100 m2, the household pays
$390. The average subsidy in the public sector is $177 per employee, and the number of
public employees per household is 0.32 according to the 2005 population census. The av-
erage amount of subsidy per household is $57. Therefore, an average household’s out-of-
pocket payment is $333. In southern cities, space heaters and heated blankets are the most
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III. Data and Descriptive Statistics
We compile a data set from five data sources—air purifier market data,
air pollution data, manufacturing or importing location data for each
product, city-by-year demographic information from City Statistical Year-
books, and individual-level demographic variables from the 2005 Chinese
census microdata. In this section, we describe each data source and pro-
vide descriptive statistics.
A. Air Purifier Data
We use air purifier sales transaction data collected by a marketing firm in
China from January 2006 through December 2014 for 80 cities. The com-
pany collected transaction-level scanner data from eachmajor retail store
in these cities. We are provided with monthly sales and monthly average
price for each product by store, along with information on product attri-
butes. The data we analyze are in-store transactions and primarily from
individual purchases.7 The data set covers in-store transactions in major
department stores and electrical appliance stores, which account for over
80% of all in-store sales. During the period 2006–14, in-store sales made
up 72% of overall purifier sales (including in-store and online sales).
Because our data set does not cover 100% of purifier sales, we take two

approaches to defining sales volume for our estimation. In the first ap-
proach, we simply ignore transactions outside our data set. Although this
procedure provides transparency and conservative estimates, it underes-
timates each product’s sales volume. In the second approach, we adjust
sales volume proportionally to address this limitation. Specifically, we
multiply the sales volume of each product by 1.73 (51=ð0:8 � 0:72Þ).
Since both approaches have their advantages and disadvantages, we re-
port empirical results with both approaches—the latter as main results
and the former in table A.8 (tables A.1–A.8 are available online). As we
describe in section IV, the two approaches produce exactly the same re-
sults for standard logit estimation because the proportional multipliers
will be fully absorbed by city fixed effects. While this is not the case for
7 The raw scanner data include both individual and corporate purchases in retail stores,
and the data indicate whether an official invoice is issued for each transaction. In China,
for a government or corporate purchase to be reimbursed, an official invoice issued by the
Chinese Tax Bureau (but provided by the seller), called a fapiao, is required. The invoice is
addressed to the government or the corporate office. To generate the data for our analysis,
the marketing company first includes individual purchases without official invoices in the
raw transaction-level data and then generates monthly sales and prices data by store and
product.

common choices, which could cost $150–$200 including the purchasing of these devices
and the electricity bill in winter for a similar-sized home. If a household chooses a more
expensive option—air conditioning—the electricity bill for 3 months in winter could be
approximately $240–$280, and the entire cost depends on the price of the air conditioners,
which varies to a great extent.
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random-coefficient logit estimation due to its nonlinearity, we show that
results for random-coefficient estimation are also very similar between
the two approaches because city fixed effects absorb most of the differen-
tial variation.
There are 690 products sold by 45 manufacturers, including domestic

and foreign companies. The raw sales and price data are at the product-
city-store-year-month level. In our empirical analysis, the exogenous var-
iation in pollution comes from city-level variation. Therefore, we aggre-
gate the transaction data to the product-city level. A unique feature of
the data set is that we observe detailed attributes for each product. The
key attribute for our study is the HEPA filter, which allows us to quantify
the amount of particulate matter that a product can remove.
B. Air Pollution Data
For air pollution data, we use city-level annual average PM10 from 2006 to
2014, which was collected by Ebenstein et al. (2017). The raw data come
from two publications in Chinese, China’s Environmental Yearbooks and
China’s Environmental Quality Annual Reports.
C. Demographic Data
We compile demographic data from two sources. First, we obtain city-year
measures on population, urban population, and GDP per capita fromCity
Statistical Yearbooks in 2006–14. Second, we obtain individual-level microdata
from the 2005 census. For each city, the data set includes demographic var-
iables for a random sample of individuals. We use household-level income
data to create the empirical distribution of each city’s household annual
income, which we use in our empirical analysis. We also aggregate the cen-
sus microdata to calculate a rich set of city-level socioeconomic measures,
including average years of schooling, illiteracy rate, high school completion
rate, college completion rate, average household income per capita, home
size (in m2), and measures of housing quality.
D. Geographic Information System (GIS) Data and Map
In figure 1, we present the city centroids of the 80 cities that we use for our
analysis. We obtain the latitudes and longitudes of the city centroids from
the census data and plot them onto the map of China using ArcGIS. We
also show the location of the Huai River–Qinling Mountains line, which
divides China into north and south.8
8 The original source of the Huai River–Qinling Mountains line is from the Harvard
Map Collection at Lamont Library. This is the same source used in previous studies on
the Huai River, such as Almond et al. (2009).
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For our empirical analysis, wemake two distance variables based on the
city and river locations. The first variable is the distance between a city
and the Huai River. For each city, we use ArcGIS to measure the shortest
distance from the city centroids to the nearest point on the river. This dis-
tance ranges from18 to 1,044miles, and themedian distance is 303miles.
The second distance variable is the road distance from a city’s centroid
to the factory or importing port locations of air purifiers. Figure A.1
(figs. A.1–A.6 are available online) shows the locations of manufacturing
plants of domestically produced products and ports of imported prod-
ucts. We use GIS andGoogleMaps tomeasure the shortest road distances
from city centroids to these locations.
E. Summary Statistics and Testing for Balance
in Observables
Table 1 shows the summary statistics of the purifier data. In panel A, we
report product-level summary statistics for all products in column 1, for
HEPA purifiers in column 2, and for non-HEPA purifiers in column 3.
In column 4, we calculate the difference in the means between HEPA
and non-HEPA purifiers and the standard errors for the differences by
clustering at the manufacturer level. Despite substantial heterogeneity
across products, the difference in the means between HEPA and non-
HEPA purifiers is statistically insignificant for many purifier attributes,
such as humidifying function, distance to the factory or port, and fre-
quency of filter replacement. We observe statistically significant differences
between the two purifier types for three variables: price of purifiers, price
of replacement filters, and room coverage, although the difference in
room coverage is only marginally significant. On average, HEPA purifi-
ers are $139 more expensive, cost $21 more when replacing a filter, and
cover 8.4 more square meters.
In panel B, we show the number of purifier sales relative to the number

of households as a percentage. For overall purifier sales, this statistic is
higher for higher-income cities such as Beijing and Shanghai, implying
that economic growth levels are likely to affect overall purifier sales. For
our estimation, what matters is the relative sales share of HEPA purifiers
to non-HEPApurifiers, as we explain in section IV. This statistic is presented
in column 4. The ratio of HEPA purifier sales relative to non-HEPA puri-
fier sales is approximately 1.2 for consumers located south of the Huai
River and 2.0 for consumers located north of the Huai River. This statistic
provides descriptive evidence that consumers north of the Huai River are
more likely to buy purifiers withHEPA than consumers south of the river.
We provide more formal RD analysis for this evidence in section V.9
9 A potential approach to measuring the implied abatement cost of indoor air pollution
is to calculate the air purifier price per a reduction in PM10. For example, if we consider the
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Table 2 shows summary statistics of city-level observables. Columns 1
and 2 report the sample mean and standard deviation for the north and
the south of the Huai River, respectively. Column 3 reports the raw
TABLE 1
Summary Statistics of Air Purifier Data

All
Purifiers

(1)

HEPA
Purifiers

(2)

Non-HEPA
Purifiers

(3)

Difference
in Means

(4)

A. Air purifier attributes:
Price of a purifier ($) 454.52 509.64 369.81 139.84***

(383.81) (404.24) (333.45) [52.14]
Humidifying (0 or 1) .164 .177 .143 .034

(.370) (.382) (.351) [.070]
Room coverage (m2) 41.85 44.97 36.50 8.47*

(23.65) (24.93) (20.27) [4.42]
Distance to factory or port
(hundreds of miles) 7.48 7.32 7.72 2.39

(2.87) (2.69) (3.12) [.45]
Price of replacement filter ($) 46.38 56.39 34.92 21.47*

(52.21) (65.68) (25.91) [10.70]
Frequency of filter replacement
(months) 9.03 10.08 7.92 2.17

(5.93) (6.55) (4.97) [1.37]

HEPA/Non-
HEPA (Ratio)

B. Number of purifier sales/number
of households (%):

Beijing (north) 17.82 12.10 5.72 2.12
Xi’an (north) 6.20 4.38 1.82 2.41
All northern cities 4.70 3.16 1.54 2.06
Shanghai (south) 8.89 5.08 3.81 1.33
Shenzhen (south) 8.35 4.39 3.96 1.11
All southern cities 3.47 1.94 1.53 1.27
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difference between these sample means. Note that this statistic shows a
simple difference between all cities in the north and the south, which
is not necessarily a discontinuous difference at the Huai River. In col-
umn 4, we investigate whether there is such a discontinuous difference.
We use local linear regression—our main RD specification in the em-
pirical analysis—to obtain RD estimates for the observables and report
the standard errors in brackets.
We consider a wide range of socioeconomic variables that are relevant

for our analysis, including population, urban population, illiteracy rate,
high school completion rate, college completion rate, per capita house-
hold income, and home size (in m2). Column 3 suggests that there are
statistically significant differences in the sample means for several mea-
sures between the north and the south. However, the RD estimates in
TABLE 2
Summary Statistics of Observables for North and South of the Huai River

North
(1)

South
(2)

Differences
in Means

(3)

RD Estimates
(Local Linear)

(4)

Population (millions) 2.398 2.720 2.323 2.388
(2.266) (3.189) [.625] [1.411]

Urban population (millions) 1.773 1.974 2.200 21.092
(1.770) (2.436) [.480] [1.151]

Years of schooling 9.30 8.64 .667*** 2.101
(.88) (1.12) [.227] [.671]

Fraction illiterate .052 .069 2.016** .003
(.022) (.033) (.006) (.018)

Fraction completed high school .338 .286 .051** .018
(.107) (.112) [.025] [.074]

Fraction completed college .052 .048 .004 2.019
(.033) (.031) [.007] [.021]

Per capita household income
(in 2005 dollars) 527.52 698.10 2170.58** 2134.54

(152.79) (388.20) [67.27] [107.41]
House size (m2) 75.24 92.04 216.80*** 212.25

(13.32) (17.52) [3.51] [9.34]
Residence built after 1985 .691 .718 2.027 2.040

(.083) (.075) [.018] [.027]
Fraction of building materials include
reinforced concrete (less insulated) .668 .729 2.061 .010

(.187) (.147) [.037] [.107]
Fraction moved within city .074 .065 .009 2.002

(.030) (.022) [.006] [.010]
Fraction of occupation involved
with outdoor activities .218 .208 .011 .032

(.106) (.099) [.023] [.074]
Note.—In cols. 1 and 2, standard deviations are reported in parentheses. In cols. 3 and
4, standard errors are reported in brackets.
** Significant at the 5% level.
*** Significant at the 1% level.



1640 journal of political economy
column 4 indicate that the differences are not statistically significant at
the river boundary.
In addition, we also collect a number of other city-level measures to ex-

amine potential concerns regarding our identification strategy. The first
concern is that the Huai River heating policy may have made demand for
well-insulated homes lower in the northern cities.We test twomeasures of
housing quality reported in the 2005 census data: the fraction of residency
built after 1985, when China implemented the first regulation on insula-
tion efficiency of home construction materials, and the fraction of build-
ing materials that include reinforced concrete (relatively less insulated).
The second concern is that if the Huai River policy produced worse air

quality for the northern cities, it could possibly generate more within-city
residential sorting for households in the north. Using the 2005 census
data, wemeasure the fraction of individuals who havemoved from another
neighborhood in the same city in the past 5 years by city. Note that an-
other related concern is residential sorting across cities. However, as we
explain in appendix A (apps. A–F are available online), such sorting is un-
likely to affect our analysis because of a strict immigration policy enforced
by the Chinese government.
The third concern is that the Huai River heating policy may havemade

households spend more time indoors in the north, which would make
the value of indoor air quality higher in the north.Whilewedonot directly
observe how much time individuals spend indoors, we can test whether
people in the north are less likely to choose a job that involves substantial
outdoor activities. Using the 2005 census data, we define a binary variable
that is one if the occupation involves more outdoor activities (e.g., agri-
culture, construction, and transportation) and is zero otherwise. We test
whether these measures differ between the north and the south. Neither
the differences in the sample means in column 3 nor the RD estimates in
column 4 show statistically significant differences.
IV. Demand for Air Purifiers
Our goal is to obtain a revealed-preference estimate of WTP for clean air
by analyzing demand for air purifiers. Because air purifiers are differen-
tiated products with multiple attributes, we start with a random-utility
model for differentiated products.10 When a consumer purchases an air
purifier, the consumer considers utility from the product attributes and
disutility from the price. For our objective, an advantage of analyzing air
purifier markets is that one of the product characteristics—HEPA—in-
forms consumers and researchers of the purifier’s effectiveness at reducing
10 For more detailed discussion on random-utility models for differentiated products
and their estimation, see Berry (1994); Berry, Levinsohn, and Pakes (1995); Goldberg
(1995); Nevo (2001); Kremer et al. (2011); and Knittel and Metaxoglou (2013).
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indoor particulatematter. The intuition behind our approach is that the ex-
tent to which consumers value this characteristic, along with the price elas-
ticity of demand, provides useful information on their WTP for indoor air
quality improvements.
Consider that consumer i in city c has ambient air pollution xc (partic-

ulate matter). The consumer can purchase air purifier j at price pjc to re-
duce indoor air pollution by xjc 5 xc � ej . We denote purifier j’s effective-
ness at reducing indoor particulate matter by ej ∈ ½0, 1�. We observe
markets for c 5 1, . . . ,C cities with i 5 1, . . . , Ic consumers. The conditional
indirect utility of consumer i from purchasing air purifier j at city c is

uijc 5 bixjc 1 aipjc 1 hj 1 lc 1 yjc 1 eijc , (1)

where xjc represents the improvements in indoor air quality conditional
on the purchase of product j, pjc represents the price of product j in
market c, hj represents product fixed effects that capture utility gains from
unobserved and observed product characteristics, lc represents city fixed
effects, yjc represents a product-city specific demand shock, and eijc repre-
sents amean-zero stochastic term. The parameter bi indicates themarginal
utility for clean air, and ai indicates the marginal disutility of price. The
functional form for the utility function assumes that each variable, in-
cluding the error term, enters the utility function linearly.
Air purifiers usually run for 5 years and require filter replacement sev-

eral times within that period. We assume that consumer i considers utility
gains from purifier j for 5 years and pjc as a sum of up-front and running
costs.11 This approach abstracts from a potentially interesting dynamic
decision, where consumers may consider the dynamics of product en-
tries. Unfortunately, it is not possible to examine such a dynamic decision
in the context of our empirical setting. While we have monthly sales and
price data, the exogenous variation in pollution comes from purely cross-
sectional variation as opposed to time series variation. Therefore, our em-
pirical approach focuses on cross-sectional variation in pollution and
purchasing behavior, which has to abstract from potential dynamic dis-
crete choices.12
11 This approach also implicitly assumes that consumers respond to the monetary value
of an up-front cost and running costs in the same way when they purchase air purifiers. For
example, if consumers are myopic, they can be more responsive to an up-front cost than to
running costs. While we cannot rule out this possibility, recent studies empirically show
that consumers are not myopic concerning the running costs of durable goods (Busse,
Knittel, and Zettelmeyer 2013). When calculating the total cost of a purifier, we do not con-
sider future discount rates in its running cost. However, including discount rates changes
the total cost by only a small amount, and therefore we find that it does not have a signif-
icant effect on our empirical findings.

12 For example, consumers may respond to intertemporal price variation. By aggregat-
ing the panel data to cross-sectional data, we abstract from this potential intertemporal re-
sponse, which induces attenuation bias for the price elasticity. This is certainly a limitation
of our empirical strategy.
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Weassume that the error term eijc is distributed as a type I extreme-value
function. We then consider both a standard logit model and a random-
coefficient logit model. A standard logit model assumes that the prefer-
ence parameters do not vary by i. The attractive feature of this approach
is that the random-utility model in equation (1) leads to a linear equa-
tion. The linear equation can be estimated by linear generalized method
of moments (GMM) estimation with instrumental variables for pollution
and price. A random-coefficient logit model allows the preference pa-
rameters to vary by household i through observable and unobservable
factors. This feature comes at a cost—random-coefficient logit estimation
involves nonlinear GMM estimation for a highly nonlinear objective func-
tion. In this paper, we use both approaches to estimate WTP for clean air.
A. Logit Model
Webegin with a standard logitmodel. Suppose that bi 5 b andai 5 a for
consumer i and that the error term eijc is distributed as a type I extreme-
value function. Consumer i purchases purifier j if uijc > uikc for 8 k ≠ j .
The market share for product j in city c can then be characterized by13

sjc 5
exp bxjc 1 apjc 1 hj 1 lc 1 yjc

� �

oJ
k50 exp bxkc 1 apkc 1 hk 1 lc 1 ykcð Þ : (2)

The outside option ( j 5 0) is not to buy an air purifier.
Empirically, we construct the market shares for product j (sjc) and the

outside option (s0c) as follows. We assume that the number of households
in city c (Ic) represents potential buyers and that eachhouseholdpurchases
one or zero air purifiers in 5 years. We use qjc to denote the total sales vol-
ume for product j in city c during our sample period of 9 years. We then
define the market share for product j by sjc 5 ðqjc=IcÞ � ð5=9Þ. The adjust-
ment term (5/9) comes from the fact that the total sales volume is based
on 9 years of data and a household uses air purifiers for 5 years.We define
themarket share of the outside option by s0c 5 1 2 oJ

j51sjc . Note that both
the adjustment term (5/9) and the outside option (s0c) do not vary within
city c. Therefore, as we show below, these two terms are fully absorbed by
city fixed effects in the standard logit estimation and thus do not affect
our estimates. We also show in table A.8 that this adjustment term does not
substantially affect the random-coefficient logit estimation results in our
context.
We assume that the reduction in indoor air pollution is zero when con-

sumers do not purchase an air purifier (i.e., x0c 5 0). That is, if consum-
ers do not buy an air purifier, they are exposed to indoor pollution that is
13 See Berry (1994) for the proof and more detailed discussion.
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equal to ambient air pollution. Importantly, this assumption does not af-
fect our standard logit estimation because city fixed effects absorb x0c. In
random-coefficient logit estimation, city fixed effects absorb substantial
variation in x0c but do not completely do so because the model is nonlin-
ear. By making this assumption, we are likely to underestimate WTP for
clean air. This is because, in reality, xc0 (the improvements in indoor air
quality when consumers do not buy air purifiers) is likely to be positive
if consumers engage in other indoor avoidance behavior. This is one of
the reasons why we interpret our WTP estimates as a lower bound. We ex-
plain this issue in detail in section IV.C.
Because ln s0c 5 2 lnðoJ

k50 expðbxkc 1 apkc 1 hk 1 lc 1 ykcÞÞ, the differ-
ence between the log market share for product j and the log market share
for the outside options is ln sjc 2 ln s0c 5 bxjc 1 apjc 1 hj 1 lc1 yjc , as
shownby Berry (1994). Since ln s0c is absorbedby city fixed effects, this equa-
tion is simplified to

ln sjc 5 bxjc 1 apjc 1 hj 1 lc 1 yjc , (3)

where b represents the marginal utility for improvements in air quality
and a represents the marginal disutility for price. The marginal willing-
ness to pay (MWTP) for one unit of indoor air pollution reduction can
be obtained by 2b=a.
An advantage of studying air purifier markets is that ej (purifier j’s effec-

tiveness at reducing indoor particulate matter) is well known for consum-
ers. As we explained in section II.A, if a purifier has a HEPA filter, it can
reduce 99% of indoor particulate matter. On the other hand, if a purifier
does not have HEPA, it does not reduce indoor particulate matter. In ad-
vertisements and product descriptions of air purifier products in the Chi-
nese market, consumers are well informed of the difference between
HEPA and non-HEPA purifiers. Therefore, we define the pollution re-
duction by xjc 5 xc � Hj , where xc represents ambient pollution and Hj is
an indicator variable for HEPA purifiers. Then, xjc equals xc if Hj 5 1
and equals zero ifHj 5 0. That is, conditional on the purchase of aHEPA
purifier, consumers can reduce indoor air pollution by xc. Otherwise, the
reduction in indoor air pollution is zero. Note that non-HEPA purifiers
do not provide reductions in particulate matter but provide other utility
gains, including reductions in VOCs and odors. These utility gains are
captured by the product fixed effects hj. Using xjc 5 xc � Hj , our random-
utility model results in an estimation equation:

ln sjc 5 bxcHj 1 apjc 1 hj 1 lc 1 yjc : (4)

Source of identifying variation.—It is worth clarifying the source of the
identification variation in this equation. The product fixed effects (hj)
absorb all observed and unobserved product characteristics, and the city
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fixed effects (lc) absorb all city-level demand shocks. Even with these
fixed effects, we can still identify b because ambient air pollution (xc) var-
ies by city and xcHj has city-by-product variation. We can also identify a
because we have city-by-product variation in pjc. A key empirical question
is whether there is exogenous variation in these two variables (xc and pjc).
In “Empirical Strategy” (sec. V.A), we explain our instrumental variable
strategy to exploit plausibly exogenous variation in these variables.
B. Random-Coefficient Logit Model
To relax some assumptions of the standard logit estimation, we also use
random-coefficient estimation that allows for heterogeneity in the prefer-
ence parameters. Because general discussions on random-coefficient es-
timation are well documented in the literature (Berry, Levinsohn, and
Pakes 1995; Nevo 2001; Knittel andMetaxoglou 2013), we provide a brief
description focusing on key issues for our empirical analysis.
We begin with the same random-utility model described in equation (1)

but relax the assumptions on bi and ai by allowing the two parameters to
vary by consumer i through observable and unobservable factors. We
model the two parameters by bi 5 b0 1 b1yi 1 ui and ai 5 a0 1 a1yi1ei ,
where yi is household i’s income from the census microdata and ui and ei
are lognormally distributed unobserved heterogeneity. That is, each of
these two parameters depends on the mean coefficient, household-level
income, and a random unobserved heterogeneity. We denote the part of
the utility function that does not depend on i (the mean utility level) by
djc 5 b0xjc 1 a0pjc 1 hj 1 lc 1 yjc and the part that depends on i by
mjci 5 ðb1yi 1 uiÞxjc 1 ða1yi 1 eiÞpjc . The market share for product j in city
c can then be evaluated usingMonte Carlo integration assuming a number
of individuals nc for city c by14

sjc 5
1

nc
o
nc

i51

sjci 5
1

nc
o
nc

i51

expðdjc 1 mjciÞ
oJ

k50 expðdkc 1 mjkiÞ
: (5)

The important difference between equations (2) and (5) is that equa-
tion (5) now includes elements that vary by i. Therefore, themarket share
and djc have to be calculated numerically by the fixed-point iterations:
dh11
:c 5 dh:c 1 ln S:c 2 ln s:c for h 5 0, . . . , H, in which s.c is the predicted
market share by equation (5) and S.c is the observed market share from
the data. Once d is obtained, yjc can be written as yjc 5 djc 2 ðb0xjc1
a0pjc 1 hj 1 lcÞ ; qjc .
The idea behind the estimation is that if there is a set of instrumental

variables that are uncorrelated with qjc, we can estimate the parameters
14 See Nevo (2001) for a more detailed explanation for how to derive this equation.



willingness to pay for clean air 1645
by nonlinear GMM using the moment conditions of the instruments and
qjc. Denote the vector of the parameters by v and a set of instruments by
Zjc. The GMM estimate is then

v̂ 5 argmin qjcðvÞ0ðZjcÞF21ðZ 0
jcÞqjcðvÞ, (6)

in which F21 is the optimal weight matrix for the GMM estimation. The
GMM objective function is nonlinear in parameters. Therefore, it has to
be evaluated numerically by nonlinear search algorithms. In section V.A,
we describe details about the estimation.
C. Interpretation of the Parameter Estimates
For several reasons, our estimate of 2b=a is likely to provide a lower
bound estimate of MWTP for air quality. First, households in China
may have limited information on the level of air pollution as well as the
negative health effects of air pollution. As discussed in Greenstone and
Jack (2013), the presence of such imperfect information is likely to make
revealed-preference estimates of MWTP lower than the theoretical level
of MWTP that would be observed when households have access to full in-
formation. In section V.D, we provide some empirical evidence on this
point.
Second, our approach assumes that indoor air pollution levels in the

absence of air purifiers are equal to ambient pollution levels. Recent en-
gineering studies show that, on average, indoor pollution levels are lower
than outdoor pollution levels in China.15 One approach that we could
take is to rely on engineering estimates of the indoor-outdoor air pollu-
tion ratio, which would make our MWTP estimates larger. However, be-
cause we want to report a conservative estimate, we keep the assumption
that indoor air pollution levels are equal to outdoor pollution levels.
Third, our model assumes that the reduction in indoor air pollution is

zero if households do not purchase aHEPA purifier, but there can be other
avoidance methods that households can take to reduce indoor air pollu-
tion. For example, an individual can wear a mask, although it is uncom-
mon for an individual in a Chinese household to wear a mask inside their
home, andmost masks do not provide a reduction in air pollution as com-
prehensively as air purifiers. Likewise, households can improve building
insulation to reduce incoming flow of air pollution. Such unobserved
avoidance behavior lowers the baseline indoor pollution level that would
be obtained without buying an air purifier. That is, the reduction in in-
door air pollution can be greater than zero even if households do not
15 A study from Tsinghua University finds that in Beijing, on average, the indoor concen-
tration of PM2.5 is 67% of the outdoor concentration of PM2.5. See Zhang (2015).
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buy a purifier. This is another reason why our MWTP estimate is likely to
be an underestimate.
Fourth, ourmodel and empirical analysis incorporate running costs in-

curred by filter replacement but ignore electricity costs. According to in-
formation from air purifier manufacturers, the costs of running electric-
ity for HEPA purifiers are slightly higher than for other air purifiers. This
is another reasonwhy ourMWTPestimate is likely to be an underestimate.
V. Empirical Analysis and Results
We use the estimating equations derived from the random-utility model
in the previous section to estimate the preference parameters for pollu-
tion (b) and price (a), which allows us to measure WTP for clean air. We
begin by describing empirical challenges in estimating these parameters
and how we address them.We then present graphical analysis of raw data,
estimation results for the standard logit model, and estimation results for
the random-coefficient logit model.
A. Empirical Strategy
The primary challenge for our empirical analysis is that two variables in
the demand estimation—air pollution and air purifier prices—are likely
to be endogenous in nonexperimental data. Air pollution is generated by
observed and unobserved economic factors and can therefore be corre-
lated with omitted variables in the demand equation. For this reason, it is
generally hard to claim exogeneity for typical cross-sectional variation in
air pollution. To address this problem, we exploit the RD design at the
Huai River in section II.B. This approach provides us a useful research
environment for two reasons. First, it allows us to exploit plausibly exog-
enous variation in air pollution created by the natural experiment—the
Huai River heating policy. Second, the discontinuous difference in air
pollution created by the policy has existed since the 1950s. Therefore,
the natural experiment provides long-run variation in air pollution,
which allows us to study howhouseholds respond to long-lasting variation
in air pollution as opposed to transitory pollution shocks.
Another empirical challenge is that air purifier prices are also unlikely

to be determined exogenously. For example, suppose that some demand
factors are observable to firms but unobservable to econometricians. If
firms have the ability to set prices because of imperfect competition, we
expect that they set prices in response to the unobserved demand fac-
tors, which creates correlation between the price and the error term
in the demand estimation. We address this problem by combining two
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approaches. First, we use data frommany markets (cities) in China, which
allows us to include both product and city fixed effects (Nevo 2000,
2001). These fixed effects absorb product- and city-level unobserved de-
mand factors. The remaining concern is product-city-specific unobserved
demand factors that are correlated with city-product-specific price varia-
tion. To address this issue, we construct instrumental variables that cap-
ture transportation cost between a product’s manufacturing location and its
market (city). These instruments provide variation at the city-by-product
level because manufacturing locations are different between products. We
provide a detailed description of these instruments below.
First stage on air pollution.—We estimate the first stage on air pollution

using an RD design created by the Huai River heating policy. Consider
that xc is air pollution (PM10) in city c and dc is the distance between city
c and the Huai River. We use positive values of dc for distances north of
the Huai River and negative values for distances south of the river. Addi-
tionally, a dummy variable for the north of the river can be denoted by
Nc 5 1fdc > 0g.
We use the RD design to estimate a discontinuous change in air pollu-

tion (xc) at the river border (dc 5 0) by controlling for the running vari-
able (dc). The recent literature suggests that a local linear regression
based on data near the RD cutoff is likely to produce the most robust es-
timates (Imbens and Lemieux 2008; Gelman and Imbens 2014). There-
fore, we use local linear regression as amain specification and also report
results with quadratic controls for dc. We use the algorithm developed by
Imbens and Kalyanaraman (2012) to compute the optimal bandwidth
but also report results with different choices of bandwidth to examine
the robustness of our results. We also follow Imbens and Kalyanaraman
(2012) and Calonico, Cattaneo, and Titiunik (2014) to use a triangular
kernel weight to assignmore weights on observations near theHuai River,
although we find that such weighting does not substantially change our
results.
Our baseline specification for the first stage on air pollution is the fol-

lowing local linear regression:

xc 5 gNc 1 f1dc 1 f2dcNc 1 nl 1 ec , (7)

where xc represents PM10 (mg/m3) in city c, Nc is the dummy variable for
the north, dc represents the distance between city c and the Huai River,
and ec is the error term. The coefficient of interest, g, measures a discon-
tinuous change in xc at the Huai River border. A potential concern for spa-
tial RD design like ours is that the spatial border is long from the west to
the east of China and therefore unobserved factors in the west-east di-
mension could confound the RD estimate. To address this concern, we
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include longitude-quartile fixed effects (nl), which flexibly control for sys-
tematic differences in the west-east dimension.16

One way to investigate the validity of our RD designs is to test whether
there are systematic differences in observable variables at the RD cutoff.
In section III.E, we do not find a statistically significant discontinuity for a
wide range of socioeconomic measures at the river boundary. Neverthe-
less, we examine the robustness of our results by including city demo-
graphics as additional covariates.
Reduced form of the RD design.—Suppose that our first stage on PM10 pro-

vides evidence of a discontinuous increase in PM10 at theHuai River bound-
ary. Then, our demandmodel predicts that the logmarket share forHEPA
purifiers relative to the logmarket share forotherpurifiers shouldbehigher
in cities north of the river if households value clean air. Our reduced-form
estimation examines whether there is a discontinuous change in the mar-
ket share forHEPApurifiers at the river boundary.Weuse our city-product-
level data to estimate a reduced-form equation,

ln sjc 5 rNcHj 1 apjc 1 ðw1dc 1 w2dcNc 1 nlÞHj 1 hj 1 lc 1 ejc , (8)

where sjc and pjc respectively represent the market share and the price of
product j in city c, hj represents product fixed effects, and lc represents
city fixed effects. Because we include city fixed effects, the log market
share for outside options (ln s0c) and a dummy variable for northern cities
(Nc) are absorbed by lc.
We allow the control function for the running variable (w1dc 1 w2dcNc)

and the longitude-quartile fixed effects (nl) to differ between HEPA and
non-HEPA purifiers by including ðw1dc 1 w2dcNcÞHj . Note that even with-
out including these control variables, city- and product-level unobserved
factors are already absorbed by city and product fixed effects. These
HEPA-specific control variables allow us to further captureHEPA-specific
potential confounding factors that may exist in the north-south and west-
east dimensions.
Second stage of the RD design.—We estimate the MWTP for clean air by

running the following second-stage regression,

ln sjc 5 bxcHj 1 apjc 1 ðJ1dc 1 J2dcNc 1 nlÞHj 1 hj 1 lc 1 ejc , (9)

by using NcHj as the instrument for xcHj. The identification assumption
is that the instruments are uncorrelated with the error term given the
16 We make the longitude-quartile fixed effects by simply dividing our cities into quar-
tiles on the basis of the longitudes of the city centroids. We also use longitude fixed effects
based on the number of groups that are larger than four and find that our results do not
change substantially.
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control variables and fixed effects. The parameter of interest is 2b= a,
which provides the MWTP for one unit of PM10 (mg/m3).
Instruments for air purifier price.—In addition to the endogeneity of air

pollution, we need to address the potential endogeneity of prices in equa-
tions (8) and (9). Beforewe explainour instruments, it is useful todescribe
the sources of endogeneity that are controlled by the product and city
fixed effects and those that are not fully controlled by these fixed effects.
In the demand estimation of differentiated products, a major omitted-

variable concern is unobserved product quality. A product with unob-
served high quality is likely to have a high price and be preferred by con-
sumers. Therefore, unobserved product quality can create correlation
between prices and the error term. An advantage of our research design
is that we havemanymarkets (cities) so that we can include product fixed
effects in the same way as Nevo (2000, 2001). Another omitted-variable
concern is city-level unobservable economic factors that affect demand.
If firms set higher prices in cities with greater economic development,
this also creates correlation between prices and the error term. We in-
clude city fixed effects to control for this concern.
Thus, the remaining concern is unobserved demand factors at the

product-by-city level that are correlated with product-by-city-specific price
variation. For an unobserved reason, suppose that there is higher de-
mand for a particular product than others in a city and also that this phe-
nomena is specific to this city—otherwise, product fixed effects absorb
this factor. In addition, suppose that firms know about these unobserved
demand factors and are able to set a higher price for this product only in
this city. In this case, our product fixed effect and city fixed effect cannot
control for this endogeneity.
To address this concern, weneedan instrument that varies at theproduct-

by-city level. Any instrument that has only city- or product-level variation
would be absorbed by product and city fixed effects. An ideal instrument
is a supply-side cost shifter that does not directly affect demand. Our idea
is that transportation costs from a product’s manufacturing location to its
market (city) has product-by-city variation and canbe considered a supply-
side cost shifter conditional on control variables in our estimation.
To make this instrument, we collect data on product-level factory loca-

tions (or port locations for imported products). We then use GIS to mea-
sure the shortest road distance from each product’s factory (or port) lo-
cation to each city. Because ground transportation is a primary shipping
method for air purifiers in China, the road distance captures key varia-
tion in transportation costs. In the first-stage regression, we estimate the
relationship between air purifier prices and the linear, quadratic, and cu-
bic terms of the road distance. In addition, we also include the road dis-
tance variable interacted with manufacturer dummy variables to allow the
price-distance relationship to be different among manufacturers.
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The identification assumption is that the instrument (the road dis-
tance from a product’s factory or port to each market) is uncorrelated
with product-by-city unobserved demand factors. Note that either city-
or product-level unobserved factors do not confound the instrument be-
cause of product and city fixed effects. For example, consider a concern
that the distance from a city to a port can be correlated with city-level in-
come because many coastal cities in China are high-income cities. This is
not an issue in our estimation because this correlation is absorbed by city
fixed effects. Thus, a threat to identification has to be unobservables that
have product-by-city-level variation. In appendix A, we discuss potential
threats to identification and provide several robustness checks.
B. Graphical Analysis of the RD Design
Before we proceed to formal regression analysis, we provide graphical
analysis of the spatial RD design in figure 2. Figure 2A presents graphical
analysis for the first stage of the RD design. The scatterplot shows the lo-
cal means of PM10 during 2006–14 with a bin size of 50 miles. The hori-
zontal axis is the running variable of the RD design (dc), which is the dis-
tance between cities and the Huai River. The vertical line at dc 5 0
indicates the location of the Huai River. The northern cities are presented
on the right-hand side of the river line, and the southern cities are pre-
sented on the left-hand side. We also include two sets of fitted regression
lines. The solid line represents the regression fit with a linear control for
the running variable and its interaction with the dummy variable for the
northern cities. The dashed line represents the regression fit with linear
and quadratic controls for the running variable.
Consistent with findings in previous studies, such as Almond et al.

(2009), Chen et al. (2013), and Ebenstein et al. (2017), the figure shows
that there is a discontinuous increase in PM10 just north of the Huai River.
This evidence suggests that the coal-based heating policy generated higher
pollution levels in cities north of the river boundary.
Figure 2B shows graphical analysis for the reduced form of the RD de-

sign. Recall that the reduced-form equation (8) is ln sjc 5 rNcHj 1 apjc 1
ðw1dc 1 w2dcNc 1 nlÞHj 1 hj 1 lc 1 ejc . The coefficient of interest is r,
which is the coefficient for the interaction term of the two dummy vari-
ables, north and HEPA. Econometrically, this coefficient shows how
E ½ln sjc jHj 5 1� 2 E ½ln sjc jHj 5 0� discontinuously changes at the Huai
River boundary. To provide visual evidence, we calculate the sample ana-
log of E ½ln sjc jHj 5 1� 2 E ½ln sjc jHj 5 0� at the city level (the difference be-
tween the average log market share of HEPA purifiers in city c and the av-
erage log market share of non-HEPA purifiers in city c) and plot the local
means and regression fits in figure 2B.



FIG. 2.—RD design at the Huai River boundary. The scatterplot in A shows the local
means of PM10 during 2006–14 with a bin size of 50 miles. The horizontal axis is the dis-
tance to the Huai River—positive values are north of the river, and negative values are
south of the river. The solid line is the regression fit with a linear control for the running
variable and its interaction with the dummy variable for the northern cities. The dashed
line is the regression fit with linear and quadratic controls for the running variable. The
scatterplot in B shows the local means of E[ln(market share)FHEPA] 2 E[ln(market
share)Fnon-HEPA] along with two fitted regression lines. A color version of this figure is
available online.



1652 journal of political economy
The figure indicates that there is a sharp increase in the log market
share of HEPA purifiers relative to the logmarket share of non-HEPA pu-
rifiers at the river boundary. Visually, the discontinuous jump is approx-
imately 0.4 log points, which is consistent with the reduced-form regres-
sion results that we present in the next section. Additionally, the figure
shows no strong trend in the outcome variable over the running variable.
The relatively flat relationship between the outcome variable and the
running variable suggests that the choice of functional form for the run-
ning variable is unlikely to have a substantial impact on the RD estimates.17
C. Baseline Results: Standard Logit Model
Panel A of table 3 shows the first-stage estimation results for PM10. Col-
umns 1 and 2 are results without demographic controls and longitude-
quartile fixed effects, and columns 3 and 4 are results with these controls.
We report our estimates from local linear regression and local quadratic
regression. The estimates are robust to the choice of control function
for the running variable and the inclusion of demographic controls and
longitude-quartile fixed effects. For example, column 3 suggests that there
is a discontinuous change in PM10 at the Huai River by 24.38 mg/m3. The
magnitude is consistent with the visual evidence from figure 2A. Note that
themean PM10 is 92 mg/m3 for cities just south of theHuai River. Thus, the
RD estimate implies an approximate 26.5% increase in PM10.
In panel B of table 3, we report the first-stage estimation result for air

purifier prices. We include product fixed effects in all columns. The esti-
mates imply that the distance to factory or port and prices are positively
correlated. For example, the result in column 1 implies that the predicted
effect of the roaddistance of 500miles onprice is $46.46. This is an approx-
imate 10% increase in price for the average purifier price of $454.50. For
each column, we report this calculation and associated standard errors.
Note that the 10th, 25th, 50th, 75th, and 90th percentiles of the road dis-
tance are 211, 502, 801, 1,048, and 1,318 miles, respectively, in our data
set. Thus, this result suggests that a considerable amount of variation in
prices is explained by the road distance from manufacturing locations
or importing ports to markets. In columns 3 and 4, we include city fixed
effects to control for potentially confounding factors at the city level. For
example, firms possibly set higher prices for cities with higher average
17 We show this figure in terms of the log market shares to be consistent with the reduced-
form regression eq. (8). Another formof outcome variable, which is not equivalent to the out-
come variable in our regression analysis but can also be informative, is the nonlog version of
the outcome variable, which is simply the fraction ofHEPApurifier sales relative to all purifier
sales at the city level. We include this figure in app. E (fig. A.2). The figure implies that the
HEPA sales fraction is approximately 60% to the south of the Huai River and over 70% to
the north of the river, with a discontinuous increase at the river boundary.



TABLE 3
First-Stage Estimation for PM10 and Air Purifier Price

(1) (2) (3) (4)

Dependent Variable: PM10 (mg/m3)

A. First-stage estimation for PM10:
North 24.54*** 24.55*** 24.38*** 24.19***

(6.97) (6.98) (8.71) (8.86)
Observations 49 49 49 49
R2 .36 .36 .56 .57
Control function for running
variable Linear � north Quadratic Linear � north Quadratic

Demographic controls Yes Yes
Longitude-quartile fixed effects Yes Yes

Dependent Variable: Price ($)

B. First-stage estimation for air
purifier price:

Distance to factory (hundreds
of miles) 18.43*** 18.39*** 12.70** 12.67**

(4.97) (4.98) (4.94) (4.93)
Distance to factory2 (hundreds
of miles) 22.32*** 22.33*** 21.49* 21.49*

(.72) (.72) (.77) (.77)
Distance to factory3 (hundreds
of miles) .10*** .10*** .06 .06

(.03) (.03) (.04) (.04)
Observations 7,359 7,359 7,359 7,359
R2 .96 .96 .96 .96
Control function for running
variable Linear � north Quadratic Linear � north Quadratic

Product fixed effects Yes Yes Yes Yes
City fixed effects Yes Yes
Longitude-quartile fixed effects�
HEPA Yes Yes Yes Yes

Predicted effect of 500 miles
on price 46.46*** 46.30*** 33.22*** 33.16***

(12.07) (12.15) (11.43) (11.42)
Predicted effect as %
of mean price 10.2 10.2 7.3 7.3
Note.—Observations in panel A are at the city level, and observations in panel B are at
the product-by-city level. Demographic controls include population and GDP per capita
from City Statistical Yearbooks (2006–14) and average years of schooling and the percentage
of the population who have completed college from the 2005 census microdata. The dis-
tance variable in panel B measures each product’s distances between the manufacturing
factory or importing port to markets. We also include the interaction of the linear distance
variable with manufacturer dummy variables to allow a flexible functional form for the re-
lationship between prices and distance.
* Significant at the 10% level.
** Significant at the 5% level.
*** Significant at the 1% level.
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income. The results in these columns imply that the relationship between
distance and price is robust to the inclusion of city fixed effects.
Table 4 shows the reduced-form and second-stage results of the RD de-

sign.18 We include product and city fixed effects. Because we have more
instruments than regressors (an overidentified case), the two-step GMM
estimation with the optimal weight matrix provides a more efficient esti-
mator than the two-stage least squares estimation (Cameron and Trivedi
TABLE 4
Standard Logit: Reduced-Form and Second-Stage Estimation Results

Dependent Variable: ln(Market Share)

(1) (2)

A. Reduced form of the RD design:
North � HEPA (r) .4275*** .4216***

(.0329) (.0320)
Price (a) 2.0052*** 2.0052***

(.0001) (.0001)
Observations 7,359 7,359
First-stage F-statistic 870.29 1,115.94
Control function for running variable Linear � north Quadratic

B. Second stage of the RD design:
PM10 � HEPA (b) .0299*** .0302***

(.0030) (.0032)
Price (a) 2.0048*** 2.0048***

(.0001) (.0001)
Observations 7,359 7,359
First-stage F-statistic 285.16 292.01
Control function for running variable Linear � north Quadratic
MWTP for 5 years (2b/a) 6.2077*** 6.3100***

(.6649) (.7130)
MWTP per year 1.2415*** 1.2620***

(.1330) (.1426)
18 Note that the reduced-form result prese
sign after we control for another endogeno
purpose of this approach is to examine the
come variable (log market share) and the v
north) by controlling for the effect of anoth
is consistent with the model described in sec
tional presentation of “reduced-form” estima
duced form of the RD design” to make this p
nted here is the reduced
us variable (price) with it
reduced-form relationshi
ariation created by the R
er endogenous variable (
. V. Because this is differ
tion results, we use the t
oint explicit.
Note.—Panel A shows results for the reduced-form estimation in eq. (8). All regressions
include product fixed effects, city fixed effects, and longitude-quartile fixed effects inter-
acted with HEPA. Price is instrumented with the distance variables discussed in the main
text. Panel B shows results for the second-stage estimation in eq. (9). PM10 � HEPA and
price are instrumented with north � HEPA and the distance variables discussed in the
main text. We use the two-step linear GMM estimation with the optimal weight matrix.
Standard errors are clustered at the city level. We also report the Kleibergen-Paap rk Wald
F-statistic. The Stock-Yogo weak identification test critical value for one endogenous vari-
able (10% maximal instrumental variable size) is 16.38 and for two endogenous variables
(10% maximal instrumental variable size) is 7.03.
*** Significant at the 1% level.
form of the RD de-
s instruments. The
p between the out-
D design (HEPA �
price) in a way that
ent from a conven-
erminology “the re-
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2005). We use the orthogonality conditions of the instruments to imple-
ment the two-step linear GMM estimation and cluster the standard errors
at the city level. Consistent with figure 2B, the reduced-form results pro-
vide evidence that there is an economically and statistically significant dis-
continuous increase in the log market share of HEPA purifiers relative to
the log market share of non-HEPA purifiers. In panel B of table 4, we re-
port the second-stage results. As we described in section V, 2b=a pro-
vides MWTP for 1 mg/m3 reduction in PM10 for 5 years, and therefore
2ðb=aÞ=5 provides MWTP per year. We provide both of these estimates in
the table. The results for the local linear regression indicate that the
MWTP per year is $1.34 per household.
In table 5, we test the robustness of the results to the selection of band-

width and control functions for the running variable. We use a range of
bandwidths that are narrower than the optimal bandwidth (400 miles) to
examine how our RD estimate changes if we use cities farther from or
closer to the Huai River. We report the results using local linear regres-
sion in panel A and the results using local quadratic regression in panel B.
The results are robust to the bandwidth choice. In appendix F, we also report
this robustness check for the first-stage estimation.
D. Role of Information in WTP for Clean Air
As we discussed in section IV, our MWTP estimate should be interpreted
as MWTP given the information that was available to Chinese households
in the sample period. For example, if households had limited informa-
tion about air pollution because of imperfect information disclosed by
the government as well as limited media coverage, our MWTP estimate
can be lower than anMWTP estimate that would be obtained with perfect
information.
With nonexperimental data, it is challenging to shed light on this point

because the information-acquisition process itself is unlikely to be ex-
ogenous to a preference for clean air. A potential empirical strategy is to
use a plausibly exogenous information shock and examine whether the
MWTP estimate differs before and after the information shock. In our con-
text, we consider that widespread media coverage on air pollution after
January 2013—due to a sudden information disclosure by the US embassy
in Beijing in January 2013—can be used as an information shock to ex-
plore the question.
In the beginning of 2013, there was a remarkable change in Chinese

press coverage of air pollution. Before 2013, Chinese media rarely dis-
cussed air pollution and its associated health impacts. On January 12,
2013, the US embassy in Beijing posted an air quality index of 755, be-
yond the scale’s maximum of 500, and deemed air quality “crazy bad”
(Wong 2013). Immediate reactions and concerns among Chinese citizens
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prompted widespread reporting of air pollution in state newspapers.19 In
figure A.4, we show that there were on average 158 headlines per year that
mentioned air pollution in all Chinese newspapers from 2006 to 2012 and
that this number increased dramatically to 1,327 in 2013 and 1,549 in 2014.
Similarly, the number of newspaper headlines mentioning smog jumped
from 12 per year during 2006–12 to over 1,000 per year in 2013 and 2014.
This sudden change in media coverage provides a useful research en-

vironment to examine the relationship between information andMWTP
TABLE 5
Robustness Checks

Dependent Variable: ln(Market Share)

250 Miles
(1)

300 Miles
(2)

350 Miles
(3)

400 Miles
(4)

A. Control function for the
running variable—
linear � north:

PM10 � HEPA (b) .0296*** .0322*** .0268*** .0299***
(.0029) (.0047) (.0010) (.0030)

Price (a) 2.0036*** 2.0038*** 2.0042*** 2.0048***
(.0002) (.0002) (.0001) (.0001)

Observations 5,619 5,878 7,107 7,359
First-stage F-statistic 1,921.77 526.20 1,348.93 285.16
MWTP for 5 years (2b/a) 8.2840*** 8.4562*** 6.3748*** 6.2077***

(1.0665) (1.4798) (.2764) (.6649)
MWTP per year 1.6568*** 1.6912*** 1.2750*** 1.2415***

(.2133) (.2960) (.0553) (.1330)
B. Control function for the

running variable—
quadratic:

PM10 � HEPA (b) .0298*** .0327*** .0265*** .0302***
(.0028) (.0046) (.0010) (.0032)

Price (a) 2.0035*** 2.0037*** 2.0042*** 2.0048***
(.0002) (.0002) (.0001) (.0001)

Observations 5,619 5,878 7,107 7,359
First-stage F-statistic 2,122.08 467.03 1,399.44 292.01
MWTP for 5 years (2b/a) 8.4464*** 8.7436*** 6.3470*** 6.3100***

(1.0758) (1.5087) (.3034) (.7130)
MWTP per year 1.6893*** 1.7487*** 1.2694*** 1.2620***

(.2152) (.3017) (.0607) (.1426)
19 All Chinese newspapers are co
and Wu 2018).
mpletely or pri
marily owned by
 the state (Qin,
Note.—This table shows results for the second-stage estimation in eq. (9) with alterna-
tive choices of bandwidth and control functions for the running variable. All regressions
include product fixed effects, city fixed effects, and longitude-quartile fixed effects inter-
acted with HEPA. See table 4’s note. Standard errors are clustered at the city level. We also
report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak identification test crit-
ical value for two endogenous variables (10% maximal instrumental variable size) is 7.03.
*** Significant at the 1% level.
Strömberg,
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estimates. For this analysis, we divide our data to create two cross-sectional
data sets: one that includes data from 2006–12 and one that includes data
from 2013–14. What we want to test is whether the preference for air qual-
ity (b in ourmodel) changed in response to the change inmedia coverage
in 2013. To test this prediction, we pool the two data sets and estimate the
coefficient for the interaction term between xcHj and post-2013, which is
an indicator variable for years after 2013. We interact post-2013 with all
of the control variables, such as city fixed effects, product fixed effects,
and the running variables for the RD design.
Table 6 shows the results. The baseline result in column 1 implies that

the preference for air quality (b) is higher in the post-2013 period than in
the pre-2013 period, and the difference is statistically significant. The es-
timated per-year MWTP is $0.53 in the pre-2013 period and $1.44 in the
post-2013 period. A potential concern in this regression is that time series
variation in factors unrelated to media coverage may confound the esti-
mate of the interaction term. For example, economic growth during
TABLE 6
Role of Information in WTP for Clean Air

Dependent Variable: ln(Market Share)

(1) (2) (3)

PM10 � HEPA .0192*** .0174*** .0193***
(.0018) (.0027) (.0025)

PM10 � HEPA � post-2013 .0329*** .0307*** .0280***
(.0076) (.0079) (.0090)

Price 2.0072*** 2.0072*** 2.0064***
(.0001) (.0002) (.0002)

Observations 10,780 10,780 10,780
First-stage F-statistic 113.39 112.01 189.15
Control function for running variable Linear � north Linear � north Linear � north
Product fixed effects � post-2013 Yes Yes Yes
City fixed effects � post-2013 Yes Yes Yes
Longitude-quartile fixed effects �
HEPA � post-2013 Yes Yes Yes

Salary � HEPA Yes Yes
Salary � price Yes
MWTP per year before 2013 .5313*** .4867*** .6001***

(.0595) (.0874) (.0918)
MWTP per year after 2013 1.4438*** 1.3458*** 1.4707***

(.1475) (.1376) (.2009)
Difference in MWTP per year .9124*** .8591*** .8706***

(.1961) (.2040) (.2647)
Note.—This table shows results for the second-stage estimation in eq. (9) but allows the
preference for air quality (b) to be different before and after 2013. Observations are at the
product-city-pre(-post)-2013 level. Standard errors are clustered at the city level. We also
report the Kleibergen-Paap rk Wald F-statistic. The Stock-Yogo weak identification test crit-
ical value for one endogenous variable (10% maximal instrumental variable size) is 16.38
and for two endogenous variables (10% maximal instrumental variable size) is 7.03.
*** Significant at the 1% level.
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the sample period could have made households wealthier in the post-
2013 period. While it is challenging to completely address this issue, we
can include additional controls to mitigate this concern. In column 2,
we control for the interaction term between xcHj and annual salary data.20

In column 3, we also include the interaction term between pjc and annual
salary to control for the possibility that the price elasticity can be affected
by a change in economic growth. Between the columns, the estimates
change only slightly, indicating that the results are robust to these controls.
In figure A.5, we provide additional evidence that supports the find-

ings in table 6. To investigate when the preference for air quality (b)
changed in response to the information shock, we create a data set on pu-
rifier sales, prices, and air pollution at the city-year-month level. We then
estimate b for each year-month before and after January 2013. We find
that there is a discontinuous and persistent increase in the estimates of
b immediately after January 2013, which suggests that the response to
the information shock was immediate and long-lasting.
These results suggest an important role of information for MWTP.

First, this finding provides empirical evidence for the point made by
Greenstone and Jack (2013) that MWTP for environmental quality can
be distorted by market failures—including imperfect information avail-
able to households in developing countries—and therefore estimated
MWTP may be different from the theoretical MWTP with no market fail-
ures. Our empirical evidence suggests that the imperfect information on
air pollution before 2013 was likely to create a downward bias for the re-
vealed MWTP estimate relative to MWTP in the presence of more acces-
sible information. Second, note that the information available to house-
holds in the post-2013 period may not be “full information” compared to
information available to households in other countries, such as theUnited
States. For this reason, we want to emphasize that our MWTP estimate
should be interpreted as an MWTP estimate given the set of information
available to households in our sample period. For instance, if households
in our sample period have limited access to full information on air pollu-
tion even after 2013, our MWTP estimate should be considered a lower
bound estimate of the theoretical MWTP under truly full information.
E. Heterogeneity in WTP for Clean Air
The advantage of the standard logit estimation in the previous section is
that it can be estimated by a linear two-stage least squares or a linearGMM
method and therefore does not involve nonlinear estimation. On the
other hand, a key assumption in the standard logit model is that the
20 While the household income data from the 2005 census do not provide panel vari-
ation, the annual salary data from the Yearbook give us panel variation.
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preference parameters are homogeneous across individuals. We implicitly
assume that the preference for clean air (b) and the sensitivity for price (a)
are homogeneous across households, and hence the MWTP for clean air
(2b=a) is also homogeneous. In this section, we relax this assumption
and estimate heterogeneity in b and a as we described in section IV.B.
Random-coefficient demand estimation requires nonlinear GMM esti-

mation based on numerical optimization with a set of starting values and
stopping rules for termination. Recent studies show caution regarding
such numerical optimization and provide guidelines for assessing robust-
ness of estimation results. For example, Knittel and Metaxoglou (2013)
suggest examining (1) conservative tolerance levels for nonlinear searches,
(2) different sets of nonlinear search algorithms, and (3) many starting
values to analyzewhether the estimated local optimum is indeed the global
optimum of the GMM objective function.
We estimate our model with six nonlinear search algorithms (conju-

gate gradient, SOLVOPT, quasi-Newton 1 and quasi-Newton 2, simplex,
and generalized pattern search), 100 sets of starting values, and conserva-
tive tolerance levels for nonlinear searches. In total, we obtain 600 estima-
tion results to test the robustness of our results. For starting values for
nonlinear parameters, we generate random draws from a standard nor-
mal distribution. We set the tolerance level for the nested fixed-point it-
erations to 1E–14 and the tolerance level for changes in the parameter
vector and objective function to 1E–04.
Five of the six search algorithms produce the same minimum value of

the objective function. Only one of the algorithms—conjugate gradient—
does not reach that minimum value in our estimation. For the other five
algorithms, we find that 81–97 of 100 sets of the starting values reach the
same minimum value of the objective function. This result implies that it
is important to test multiple search algorithms and starting values to en-
sure that the local minimum in a particular set of estimation is indeed
likely to be the global minimum. The fact that the five nonlinear search
algorithms reach the same minimum objective function value provides
us strong evidence that the local minimum is likely to be the global min-
imum of the GMM objective function.
Table 7 shows the results of the random-coefficient model in equa-

tion (6). We provide results with two sets of controls for the running var-
iable of the RDdesign. Column 1 uses a linear control for the latitude and
its interaction with the indicator variable for cities on the north side of
the Huai River. Column 2 uses linear and quadratic controls for the lati-
tude. As with the results for the standard logit model in table 4, the two
sets of controls provide nearly identical results.
Table 7 provides several key findings for heterogeneity in the prefer-

ence parameters. First, the median and mean MWTP for a reduction
of PM10 (mg/m3) for 1 year are $1.19 and $1.34, respectively, which are
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not far from the MWTP estimate obtained by the standard logit model
presented in table 4. These estimates imply that annual WTP for remov-
ing the amount of PM10 (mg/m3) created by the Huai River heating pol-
icy (24.38 mg/m3, taken from table 3) is $32.70 for the average house-
holds in our sample. Second, the positive and statistically significant
coefficient b̂1 implies that there is a positive relationship between the
preference for clean air (b) and household income (yi). Note that the
unit for household income in this estimation is USD 10,000. Therefore,
the coefficient (b̂1 5 0:0924) implies that an increase in household in-
come by $10,000 is associated with an increase in b by 0.0924. Third,
the positive and statistically significant coefficient â1 implies that
TABLE 7
Heterogeneity in WTP for Clean Air: Random-Coefficient

Logit Estimation Results

Dependent Variable: ln(Market Share)

(1) (2)

PM10 � HEPA:
Mean coefficient (b0) .0459*** .0498***

(.0084) (.0092)
Interaction household income (b1) .0924*** .0891***

(.0224) (.0253)
Standard deviation (jb) .0056*** .0102***

(.0020) (.0021)
Price:
Mean coefficient (a0) 2.0069*** 2.0071***

(.0007) (.0007)
Interaction with household income (a1) .0028** .0028**

(.0011) (.0011)
Standard deviation (ja) .0026 .0024

(.0030) (.0030)
Observations 7,359 7,359
Control function for running variable Linear � north Quadratic
GMM objective function value 375.05 378.93
MWTP per year: 5th percentile .38 .07
MWTP per year: 10th percentile .49 .20
MWTP per year: 25th percentile .75 .53
MWTP per year: 50th percentile 1.19 1.10
MWTP per year: mean 1.34 1.41
MWTP per year: 75th percentile 1.90 2.04
MWTP per year: 90th percentile 2.92 3.45
MWTP per year: 95th percentile 3.86 4.69
Note.—This table shows the results of the random-coefficient logit estimation in eq. (6).
All regressions include product fixed effects, city fixed effects, and longitude-quartile fixed
effects interacted with HEPA. Column 1 uses a linear control for the running variable in-
teracted with the north dummy variable, and col. 2 uses a quadratic control for the running
variable. Asymptotically robust standard errors are given in parentheses, which are corrected
for the error due to the simulation process by taking account that the simulation draws are
the same for all of the observations in a market.
** Significant at the 5% level.
*** Significant at the 1% level.
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higher-income households are less price elastic than lower-income house-
holds. Fourth, the statistically significant estimate for jb suggests the ex-
istence of unobserved heterogeneity in the preference for air quality.21

We use two figures to visually describe the estimation results. Figure 3
shows the distribution ofMWTP on the basis of the estimates in column 1
of table 7. The figure suggests that there is wide dispersion of MWTP per
year, and the majority of the distribution is in the range between $0.49
(10th percentile) and $2.92 (90th percentile). We also show MWTP at
several percentiles of the distribution at the bottom of table 7. In figure 4,
we show the relationship between MWTP and household-level income.
We present the fitted line of the MWTP estimate over income levels with
FIG. 3.—Distribution ofmarginalWTP for clean air. This histogram is based on the random-
coefficient logit estimation results in column 1 of table 7 and household-level annual income
from the 2005 census microdata. A color version of this figure is available online.
21 Note that the analysis of heterogeneity on observables in general—including our anal-
ysis in this section—estimates how heterogeneity is associated with observables, which does
not necessarily mean a causal relationship between heterogeneity and observables because
observables are not randomly assigned. Using our census data, we find that other observ-
ables such as education do not provide a statistically significant relationship with heteroge-
neity once we control for heterogeneity with household income. While this result provides
support that household income is an important factor for heterogeneity, it does not nec-
essarily imply a causal relationship between heterogeneity in the preference parameters
and household income, because there can be unobservables that are correlated with both
income and heterogeneity. For example, home installation is an unobservable factor in our
data, and it can be correlated with both income and heterogeneity.
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95% confidence intervals. This indicates that the average MWTP given in-
come is increasing in income, suggesting that higher-income households
are willing to pay more for improvements in air quality.
Overall, the results of the random-coefficient model provide several

key implications, under the assumptions required for the nonlinear
GMM estimation. For the median and mean levels of MWTP, the esti-
mates from the standard logit estimation are not far from those obtained
by the random-coefficient estimation in our context. However, the random-
coefficient estimation highlights substantial heterogeneity in MWTP and
the positive relationship between MWTP and household income.
F. Additional Results
Weprovide additional results in the appendixes. First, we examine a num-
ber of potential threats to identification in appendix A. For example, we
show that sorting is unlikely to confound our results because of restricted
migration by theHukou system. For instrumental variables for air purifier
prices, we construct alternative instruments based on the theory of imper-
fect competition in differentiated products markets. We find that the re-
sults are robust to these alternative instruments.
FIG. 4.—Marginal WTP for clean air and household income. This figure shows the re-
lationship between the estimated marginal WTP for clean air and household-level income.
A color version of this figure is available online.
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Second, we explore the possibility that air pollution enters the WTP
function nonlinearly. The challenge in estimating nonlinearity in WTP
in our setting is that our instrument—the Huai River RD—provides only
one discrete change in air pollution. Therefore, ourmain empirical strat-
egy does not provide variation to estimate nonlinearity inWTP. To address
this limitation, we divide our cities into four groups based on the quartiles
of the longitude. Under a strong identification assumption—the varia-
tion across the four groups has to be exogenous conditional on our con-
trol variables—this approach creates more variation in theHuai River RD
that allows us to estimate nonlinearity in WTP. We find evidence that
MWTP is an increasing function of PM10 in the range of variation in
PM10 in our data. We provide the details in appendix B.
VI. Policy Implications
Our findings provide important policy implications for ongoing discus-
sion of energy and environmental regulation in developing countries. The
governments of a number of developing countries recently proposed and
implemented a variety of interventions to reduce air pollution. A key ques-
tion is whether implementing such policies enhances welfare. Below, we
use a few examples to illustrate that our WTP estimates can be used for the
cost-benefit analysis of environmental policies.
A. Measuring Policy-Relevant MWTP for Clean Air
When it comes to policy discussions, policy makers often need an aggre-
gate measure of MWTP, such as citywide or nationwide MWTP. Note that
our estimation strategy has advantages and disadvantages in providing
these measures. An advantage is that the random-coefficient estimation
incorporates heterogeneity in MWTP. Because we have household-level
income data for all cities from the census, we can calculate predicted
MWTP for each city by incorporating heterogeneity in the distributions
of household income. A disadvantage is that our estimation is based on
the RD design at the Huai River. Therefore, unless we make additional
assumptions, our estimates should be interpreted as the local average
treatment effect (LATE) for cities near the river boundary. Tomake a pre-
diction for other cities, we need to assume that the coefficients of the
random-coefficient estimation can be extrapolated to out-of-sample pre-
diction for cities away from the Huai River. Because this is an untestable
assumption, we want to emphasize that the policy-relevant MWTP mea-
sures provided below should be interpreted with this assumption inmind.
In panel A of table 8, we use our random-coefficient estimation result to

predict two policy-relevant measures of MWTP. The first is the household-
level average and aggregate MWTP for seven northern cities (Tianjin,
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Chengde, Tangshan, Dalian, Urumqi, Wuzhong, Datong) near the Huai
River. We use this measure in the next subsection to evaluate a recently
implemented heating reform in these cities. The second is the nation-
wide average and aggregate MWTP. This measure is useful when one eval-
uates the benefit of nationwide air quality improvements. For example,
our data on PM10 indicate that since China declared a war on pollution
in 2014, the national average PM10 decreased from 124 in 2013 to 72 in
2018. Our estimate suggests that a household is willing to pay at least
$65.52 (51:26 � 52) annually to have these air quality improvements.22
B. Cost-Benefit Analysis of Environmental Policies

1. Heating Policy Reform in Northern China
We first consider a policy that was recently implemented in China. In
2005, the Chinese government and the World Bank initiated a pilot re-
form to improve the Huai River heating policy in seven northern cities
(Tianjin, Chengde, Tangshan, Dalian, Urumqi, Wuzhong, Datong). The
goal of the reform is to save energy usage and reduce air pollution by
TABLE 8
Policy Implications

HouseholdLevel ($) Aggregate ($)

A. Policy-relevant MWTP measures ($ per
1 mg/m3 annual reduction in PM10):

In-sample estimate (from table 7) 1.34
Seven northern cities 1.62 10.13 million
Nationwide 1.26 .45 billion

B. Cost-benefit analysis—heating reform
in seven northern cities:

Abatement cost ($) 2.25 million
Estimated PM10 reduction (mg/m3) 11.91
Total WTP ($) 105.07 million
Benefit-cost ratio 46.70

Wind Natural Gas

C. Cost-benefit analysis—replacement of coal
power plants by wind or natural gas:

Estimated PM10 reduction (mg/m3) .56 .46
Total WTP ($) .26 billion .21 billion
MWTP for replacing coal-based electricity ($/MWh) 17.9 14.5
22 Note that we do not claim this number as the be
implemented in this period because some of these poll
sons unrelated to policies. Our calculation simply pr
provements that occurred in this period.
nefit of the environm
ution reductions can
ovides WTP for the
Note.—This table shows policy-relevant MWTPmeasures and the cost-benefit analysis of
two policies discussed in sec. VI.
ental policies
be due to rea-
air quality im-
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introducing household metering and consumption-based billing.23 Ten
years after the start of the pilot reform, there is still ongoing debate—
whether such a reform would improve welfare and whether similar re-
forms should be implemented in other cities. The main challenge is that
the cost of installing individual meters and adopting consumption-based
billing is not small, while the benefit of the reform has not been system-
atically examined.24

The abatement cost information is available in World Bank (2014)—
this 8-year project cost $18 million for the seven cities, suggesting that
the abatement cost per year was $2.25 million. The World Bank report
also estimates that the project generated a reduction in annual coal con-
sumption by 2.6 million tons, from a baseline level of 13.9 million tons,
suggesting an 18.7% reduction in coal usage. To learn how much reduc-
tion in PM10 was associated with this change in coal usage, we need to
know the elasticity of PM10 with respect to coal usage. In appendix C,
we provide three methods to estimate the elasticity. For our analysis be-
low, we use the implied elasticity (0.53) from one of our three methods.25

With this elasticity, the 18.7% reduction in coal usage is associated with a
9.9% reduction in ambient PM10, which implies an 11.91 mg/m3 reduc-
tion in PM10 for the seven cities. We then multiply this number by the ag-
gregate MWTP in the seven cities to obtain the total WTP for this policy,
which is $120.63 million.
Finally, we use this number as the benefit of the policy to calculate the

benefit-cost ratio. Note that our MWTP estimate is likely to be a lower
bound estimate for reasons described in section IV.C. Therefore, the benefit-
cost ratio is also likely to be a lower bound estimate. Our result suggests
that the heat reform policy is likely to be a welfare-improving environmen-
tal policy, even with our lower bound estimate of the policy’s benefit.
2. Replacement of Coal Power Plants
Chinese electricity generation has heavily relied on coal, but policy mak-
ers recently started to consider whether some of the coal power plants
23 As we describe in sec. II.B, the 2003 reform in all northern cities replaced a free heat-
ing provision with flat-rate billing. Households pay a fixed charge per square meter for
heating for the entire winter, which does not depend on the actual amount of usage.
The flat-rate billing provides no incentives for households to respond to market-based en-
ergy costs.

24 According to the People’s Daily (2009), the Vice Minister of the Ministry of Housing
and Urban-Rural Development summarized three obstacles to the implementation of the
heat reform: (1) many new construction projects refuse to install household meters be-
cause they are expensive, (2) it is costly to remodel old buildings to accommodate the in-
stallation of householdmeters, and (3) it is costly to build a new consumption-based billing
system.

25 Our result does not substantially change if we use estimates from the other twomethods.
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should be replaced by cleaner sources, such as natural gas or wind. We
consider a counterfactual policy in which 10% of the existing coal power
plants’ electricity production is replaced by natural gas or wind. Because
it is generally challenging to construct accurate emission inventory data
in China, we want to emphasize that our calculation below should be
interpreted as a back-of-the-envelope calculation. The emission inventory
estimate in Ma et al. (2017) implies that 6% of PM10 in China is emitted
from coal power plants.26 Therefore, if 10% of the existing coal power
plants’ production is replaced by wind power, it would result in a 0.6%
reduction in PM10. Assuming that a 0.6% reduction in PM10 implies a
0.6% reduction in the average PM10 concentration, this implies a reduc-
tion in PM10 concentration by 0.56 mg/m3 for the average nationwide level
of PM10 concentration in our data (93 mg/m3). We consider that the re-
placed power plants can operate for 30 years. Using these assumptions,
the WTP for this replacement policy is $7.67 billion (50:56 � 0:45 � 30).
EIA (2015) shows that the total electricity generation from coal power
plants in China is 4.28 billion MWh. This implies that MWTP per mega-
watt hour is $17.90 (57:67=ð0:1 � 4:28Þ) to replace coal by wind.
We provide similar calculations for natural gas. Massetti et al. (2016)

show that natural gas power plants produce 80.4% less PM10/MWh rela-
tive to coal power plants. The 10% replacement with natural gas there-
fore implies a reduction in PM10 concentration by 0.49%—0.46 mg/m3

for the average nationwide level of PM10 concentration in our data
(93 mg/m3). With the procedure presented in the previous paragraph,
MWTP per megawatt hour is $14.60 to replace coal by natural gas.
These numbers imply that the cost difference between coal power

plants and wind farms (natural gas power plants) has to be less than
$17.90/MWh ($14.60/MWh) to justify the cost-benefit of these replace-
ment policies. It is difficult to obtain a reliable cost comparison between
generation technologies in China because studies on the levelized cost of
electricity (LCOE) provide a wide range of results depending on the as-
sumptions behind the calculation (Borenstein 2012). China has poten-
tially inexpensive sources of natural gas reserves, but given the current
technology and infrastructures, at least for now the majority of studies
suggest that the LCOE of coal power plants is substantially lower than
that of natural gas power plants, most likely much more than $14.60/
MWh. Similarly, even though the cost of wind generation has been declin-
ing, most studies find that the difference in the LCOE between coal and
wind is much larger than $17.90/MWh in China. Therefore, WTP for a
26 Note that this is about the emissions from coal-fired power plants and not overall coal
usage. A substantial part of PM10 is due to coal, but coal-fired power plants are responsible
for 6% of PM10 according to Ma et al. (2017).
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reduction in PM10 per se is unlikely to justify the cost-benefit of these pol-
icies, at least for now.27
C. Avoidance Behavior and Implied VSL
in Developing Countries
Finally, we compare our MWTP estimate with those estimated from other
avoidance behavior in developing countries. A challenge in this exercise
is thatMWTP is not directly comparable across studies when it is estimated
from different avoidance behavior. For example, Kremer et al. (2011) es-
timate MWTP for clean water on the basis of avoidance behavior on water
pollution in Kenya. This MWTP is not directly comparable to our MWTP
because the harmfulness of water pollution in Kenya is not necessarily
comparable to that of air pollution in China. To make such comparison
possible, one can calculate the implied value of statistical life (VSL) on
the basis of the expected risk/damage of pollution and MWTP to avoid
such pollution.
Before we show the comparison of the implied VSL, we emphasize two

caveats required for this approach. First, this exercise requires the strong
assumption that an individual’s belief about the expected health damage
of air pollution is equivalent to the informationwe use below. For example,
one may have a biased belief if the person is not fully informed about the
relationship between air pollution and health outcomes. Second, the im-
plied VSL based on MWTP for air quality is likely to be an upper bound
estimate of the true VSL. This is because MWTP for air quality could in-
clude not only health benefits but also other nonhealth amenities associ-
ated with air purification.
Given the assumption that households are aware of the relationship be-

tween PM10 and its health damage, we can calculate the implied VSL by
the following procedure. The finding by Ebenstein et al. (2017) implies
that a lifetime increase in PM10 by 1 mg/m3 reduces life expectancy by
0.064 years. Our MWTP estimate implies that a household with the aver-
age life expectancy in China (76 years) is willing to pay $101.84 (51:34 �
76) to avoid a lifetime increase in PM10 by 1 mg/m3. Because the average
household size is 3.5, the implied value of a statistical life year (VSLY) per
person is $455 (5ð101:84=0:064Þ=3:5).
27 There are two important notes on this calculation. First, this calculation does not in-
clude other benefits of cleaner power plants, including reductions in other pollutants,
such as NOx and SOx. Second, the technological progress on natural gas and wind power
plants may be reducing the cost advantage of coal power plants substantially in the near
future. Therefore, this counterfactual policy could become relatively more cost effective in
the near future when the cost difference between coal-based electricity and alternatives
shrinks further.
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We compare this estimate with the implied VSLY in other studies.
Kremer et al. (2011) find that the implied VSLY is $24 in Kenya. León
and Miguel (2017) examine avoidance behavior on risky transportation
in Sierra Leone and find that the implied VSLY is $13,500 for Africans
and $23,232 for non-Africans. We show this comparison in the last two
rows of table 9. Although the implied VSLY is different among the stud-
ies, income is also different in these countries.We investigate whether the
difference in income can partly explain the difference in the VSLY. In col-
umn 4, we show the arc income elasticities of the implied VSLY, obtained
from comparing each study to the study in the first row. We find that the
constant income elasticity of one can consistently explain the difference
in the implied VSLY between these studies.28
VII. Limitations and Directions for Further Research
In this paper, we provide among the first revealed-preference estimates
of WTP for clean air in developing countries. In the paper and appen-
dixes, we provide empirical evidence that supports our findings, but there
are several key issues that were not fully addressed in our study.
First, a limitation of our data set is that we do not observe individual-

level transactions. Therefore, we need to assume that a household can
purchase at most one air purifier and uses it for 5 years on average—
the average usage period of air purifiers according to manufacturers.
TABLE 9
Comparison of Implied VSL

Study
Country

(1)

Implied VSL
($/Year)

(2)

Income
($/Year)

(3)

Income Elasticity
of VSL
(4)

Kremer et al. 2011 Kenya 24 480
This study China 455 8,332 1.010
León and Miguel
2017

Sierra Leone
(Africans) 13,500 62,360 1.012

León and Miguel
2017

Sierra Leone
(Non-Africans) 23,232 99,000 1.008
28 Another useful com
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For example, some households may purchase more than one air purifier
to clean their homes. Some may use their air purifiers for shorter or lon-
ger than 5 years. With individual-level transaction data, these questions
can be investigated. In addition, our data set does not include online
sales. As we described in section III, the majority of sales were in-store
sales in our sample period, 2006–14. However, online sales substantially
increased after this period. Thus, online sales data would be particularly
valuable information to understand the Chinese air purifier market for
more recent years.
Second, we do not have information on indoor avoidance behavior be-

sides air purifier purchases. For example, households may be able to mit-
igate indoor air pollution by installing better building materials or by
closing windows on polluted days. While these avoidance methods do
not provide as comprehensive reductions in indoor air pollution as air
purifiers, they could be relatively less expensive options. Therefore, in-
vesting in such avoidance behavior is also an important research topic.
Third, we focus on a static demand model without exploiting time se-

ries variation in the data because the exogenous variation in air pollution
comes from cross section. A downside of this approach is that the static
demand model abstracts from a potentially important consumer’s dy-
namicdecision—consumersmay consider intertemporal variation inprices,
product availabilities, and air pollution whenmaking their discrete choices.
An important future research topic is to include such dynamic consider-
ations within the framework presented in this paper.
Fourth, there needs to be more research on howmarket failures affect

revealed-preference estimates of MWTP for environmental quality as em-
phasized by Greenstone and Jack (2013). In section V.D, we provide em-
pirical evidence on how information available to households can be asso-
ciated withMWTP estimates. However, there can bemoremarket failures
in developing countries that could make MWTP estimates deviate from
the theoretical level of MWTP. Understanding this point is key to inter-
pretingMWTP estimates and design policies that address relevantmarket
failures.
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