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1 Introduction

A central assumption in economics is that individuals properly distinguish fixed cost from variable

cost. In public finance, a lump-sum tax or subsidy is considered to be non-distortionary because

it does not distort the relative prices of goods as long as taxpayers distinguish variable cost from

fixed cost (Stiglitz, 1988). In industrial organization, a two-part tariff—a price schedule with a

fixed charge and a variable charge—allows profit-maximizing firms to price-discriminate and natural

monopolists to achieve allocative efficiency under the assumption that consumers distinguish variable

cost from fixed cost (Tirole, 1988).

In this paper, we provide the first empirical evidence that this assumption may not be consistent

with consumer behavior in reality. Despite the fact that this assumption is fundamental to many

theoretical models and empirical works in economics, there is little to no direct empirical evidence

on this question. The closest literature is the studies on tiered marginal price schedules in which

individuals face multiple marginal prices or taxes for the same good. In this context, many studies

find evidence that consumers and taxpayers tend to respond to average price rather than marginal

price (de Bartolome, 1995; Borenstein, 2009; Kahn and Wolak, 2013; Ito, 2014; Rees-Jones and

Taubinsky, 2020). However, in studying a two-part tariff, Borenstein and Davis (2012) clarify that

evidence from this literature cannot demonstrate whether consumers distinguish variable cost from

fixed cost because differentiating between a fixed cost and a single variable cost can be much less

complex than identifying a correct marginal price from tiered marginal pricing that involves multiple

variable prices in a price schedule.

To empirically test this assumption, we use a quasi-experiment in a recent heating price reform

in China. Until recently, the majority of Chinese households paid only fixed charges for their

winter heating consumption. Starting in 2005, the Chinese Ministry of Housing and Urban-Rural

Development (MOHURD), in collaboration with the World Bank, introduced new pricing called

consumption-based billing (CBB)—a two-part tariff with a fixed charge and a single variable price.

We exploit three unique features of this reform to examine our research question. First, the

policy change induced an increase in variable cost but a decrease in fixed cost. With this price

variation, many consumers experienced an increase in marginal price but a decrease in average

price. Standard theory predicts that these consumers would reduce heating usage because the
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marginal price of heating increased.1 However, an alternative theory, originating to the theory of

“schmeduling” by Liebman and Zeckhauser (2004), predicts that they may perceive their average

price as the true marginal price. In this case, these consumers may increase heating usage even

though their marginal price increased. We exploit this price variation to develop a simple non-

parametric test on our research question.

Second, in collaboration with a regulated heating provider, the World Bank, and the MOHURD,

we were able to obtain newly-available administrative data on household-level daily heating usage

from 2007 to 2019 in the city of Tianjin. Our data address a key empirical challenge that has

been common in the literature. Usually, individually-metered usage data are available only after

the introduction of metered pricing because firms tend to install meters at the same time as they

introduce metered pricing. This makes empirical analysis challenging because individual-level usage

data are unobserved before the policy change. Our data overcome this challenge because regulators

in our context required household-level metered data to be collected at least one year before the

introduction of metered pricing. This allows us to access daily household-level usage data before

and after the reform started.

Third, the reform was introduced by staggered rollouts. Using this quasi-experimental vari-

ation in treatment timings, we can estimate the causal effects of the reform using the staggered

difference-in-differences (DID) method. Although the validity of the identification assumptions is

untestable, we show that the rollout timings are uncorrelated with observables and that our event-

study figures support parallel trends between treated and untreated households in the pre-treatment

periods. Following the recent econometric literature on the estimation of the staggered DID, we im-

plement an estimation method that allows heterogeneous treatment effects across households using

the estimation method developed by de Chaisemartin and D’Haultfœuille (2020).

We begin by estimating the overall impact of the reform on heating usage. The intention-to-

treat (ITT) estimates indicate that the reform decreased heating usage on average by 10.1% in the

first year, 10.7% in the second year, and 8.7% in the third year. These impacts are economically
1The income effect of the CBB policy, if any, was likely to be very small. The CBB policy reduced the annual fixed

charge by about $226 per household. The average household income in Tianjin in our sample period was $15,041.
Therefore, $200 was about 1.5 percent of household income. In the literature on residential energy demand, short-run
income elasticity estimates are found to be inelastic and estimated around 0.239 on average based on a recent meta
analysis (Zhu and Yang, 2018). This implies that the income effect of the CBB on heating usage is 0.36 percent. We
have a detailed discussion in Section 6.2.
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substantial and long-lasting compared to a variety of policies on residential energy usage studied

in the literature (Wolak, 2011; Ito, 2014, 2015; Ito, Ida and Tanaka, 2018; Deryugina, MacKay and

Reif, 2020; Shaffer, 2020).

We show that this overall reduction in usage can be interpreted as an improvement in social

welfare in the standard theoretical framework of two-part tariffs. The marginal price was zero

before the reform, and it was set equal to the private marginal cost of heating production after

the reform. Therefore, if we assume that consumers distinguish fixed cost from variable cost,

the reduction in usage produces an improvement in allocative efficiency. If we also consider an

environmental externality from coal-based heating production, the social marginal cost is above the

private marginal cost. In this case, the overall welfare gain of the policy is even larger.

However, this standard framework cannot be applicable if consumers do not respond to marginal

price by properly distinguishing fixed cost from variable cost. We show that the welfare impact of

the reform is ambiguous if consumers respond to the average price of the bill rather than their

marginal price as predicted by the theory of “schmeduling” (Liebman and Zeckhauser, 2004). Both

of the gains from allocative efficiency and environmental externalities are likely to be smaller than

those calculated in the standard framework, and the overall social welfare gain from the reform can

be ambiguous in theory.

To empirically test this question, we investigate whether consumers respond to marginal price

by properly distinguishing fixed cost from variable cost. As described above, many consumers in our

data experienced an increase in marginal price but a decrease in average price. For these consumers,

we use the staggered DID method to identify the causal impact of the reform on heating usage. Our

results show that the reform caused a statistically significant increase in heating usage even though

these consumers had an increase in marginal price. In addition, the reform made some consumers

in our data experience an increase in marginal price but nearly zero change in average price. We

find that the policy-induced change in heating usage for these consumers was near zero.

The set of our empirical findings suggest that consumer behavior in our data is more consistent

with the schmeduling model than the standard economic theory. However, there can be at least three

alternative mechanisms that might be able to explain this consumer behavior—category budgeting,

income effects, and spurious correlations. In Section 6, we provide additional empirical evidence

from our data that are inconsistent with these alternative explanations. First, we exploit the
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fact that consumers could opt out from the new pricing and show that the opt-out decision is

inconsistent with the prediction from the theory of category budgeting (Hastings and Shapiro,

2013). Second, we show that the income effect in our setting is very small and unlikely to explain

our empirical findings. Third, we explore whether our findings are driven by spurious correlations

between household characteristics. Our analysis suggests that spurious correlations are unlikely to

explain our key empirical findings.

Finally, we calculate the welfare impact of the reform based on our empirical findings. We obtain

the estimated environmental externality by using ambient air pollution data and the estimated

willingness to pay for clean air in Ito and Zhang (2020). We first calculate welfare impacts based on

the standard theoretical framework of two-part tariffs, which assumes that consumers distinguish

fixed cost from variable cost. In this case, the total social welfare gain is 25.5 USD per year

per household and 109.3 million USD per year for Tianjin. The one-time administrative cost of

the reform was 99 USD per household. This implies that if we conduct the cost-benefit analysis

assuming standard economic theory, the policy’s net present value of the benefit would exceeded its

cost in 4 years with the discount rate of 3% in China.

We show that this standard framework is likely to substantially overstate the benefit of the

reform once we incorporate the schmeduling behavior into the framework. In our second welfare

calculation, we incorporate the empirical finding that consumers may not properly distinguish fixed

cost from variable cost. In this case, the total social welfare gain is 6.3 USD per year per household

and 26.8 million USD per year for Tianjin. This implies that the policy requires 21 years (as

opposed to 4 years) to make its benefit exceed its cost. That is, the CBB is still likely to be a cost-

effective policy in the long run, but it takes much more time to become cost-effective than one would

consider with the standard approach. These results imply that the schmeduling behavior could alter

the welfare implications of price, tax, and subsidy designs substantially to possibly change the key

policy implications.

Related literature and our contributions—This paper provides three primary contributions to the

economics literature and the design of economic policy. First, our findings provide a new insight to

the literature on consumer inattention under complex pricing (Busse, Silva-Risso and Zettelmeyer,

2006; Gabaix and Laibson, 2006; Chetty, Looney and Kroft, 2009; Finkelstein, 2009; Brown, Hossain

and Morgan, 2010; Hastings and Shapiro, 2013; Ito, 2014; Rees-Jones and Taubinsky, 2020). As
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noted above, our study provides the first empirical evidence that consumers may not distinguish

fixed costs from variable costs as the standard economic theory predicts. We show that this behav-

ior critically changes the welfare implication of two-part tariffs. Likewise, this behavior could alter

key conclusions of many fundamental economic models, including optimal taxation, redistribution,

natural monopoly, and price discrimination (Stiglitz, 1988; Tirole, 1988). This is because if con-

sumers do not properly distinguish fixed costs from variable costs, a fixed payment or subsidy could

affect the relative prices of goods, and therefore, have a direct impact on the efficiency of price,

tax, or subsidy design. Our welfare analysis shows that this implication is empirically substantial

and policy-relevant as taking into account for the schmeduling behavior significantly changes the

cost-benefit of the CBB policy in China.

Second, our results have important policy implications for energy and climate policy across the

globe because many energy policies in practice involve combinations of fixed and variable incentives.

As we show in Section 7, the introduction of metered energy pricing could have different welfare

implications if consumers do not properly distinguish fixed costs from variable costs. Another

important relevant policy is the compensation scheme of carbon pricing in climate change policy.

When considering the introduction of carbon pricing, many governments, including the US federal

government, propose monetary compensations to citizens who would be negatively impacted by

carbon pricing. Policymakers usually propose a lump-sum fixed credit to energy bills, hoping that

a fixed credit would not distort the marginal incentive to conserve energy. However, if customers do

not distinguish fixed costs from variable costs, the fixed credit on energy bills may still discourage

conservation and defeat the purpose of carbon pricing.2

Finally, we provide one of the first pieces of empirical evidence on the long-run responses to

energy prices in developing countries. In the coming decades, most of the global increase in energy

demand will come from developing countries (Wolfram, Shelef and Gertler, 2012). Understanding

how to design energy pricing in these countries is, therefore, a first-order priority for addressing

climate change and global scarcity in natural resources. However, the energy demand literature

has focused on developed nations because of the availability of administrative billing data.3 More-
2An example includes the compensation scheme proposed in the American Clean Energy and Security Act of

2009, described on page 901 of Congress (2009). Burtraw (2009) and Burtraw, Walls and Blonz (2010) also note
that distributing a fixed credit may not work in the desired way if residential customers do not pay attention to the
difference between their marginal price of electricity and their electricity bill.

3For example, see Borenstein (2012), Aroonruengsawat and Auffhammer (2011), Wolak (2011), Ito (2014), Jessoe
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over, nearly all existing studies focus on estimating short-run demand elasticity because long-run

exogenous variation in energy prices is rarely available.4 We collected administrative billing data

in China, and our quasi-experimental design allows us to estimate three-year responses to long-run

price variation. Our findings on the sizable and long-lasting welfare gains highlight that inefficiency

in energy pricing is likely to be large in developing countries, and, therefore, it is important to

conduct rigorous studies in these countries.5

2 Key Features of the Heating Price Reform

This section describes the key features of the heating price reform in Tianjin for our research design.

First, the city of Tianjin required household-level metered usage data to be collected at least one year

before the introduction of consumption-based billing (CBB), allowing us to access daily household-

level usage data before and after the price reform. Second, the reform was introduced with staggered

rollouts, which creates quasi-experimental variation in treatment. Third, the policy-induced price

variation allows us to test if consumers properly distinguished between fixed and variable costs.

2.1 Metered Data

Since 1958, the Chinese government has provided centralized, coal-fired heating to cities north

to the Huai River. These cities constitute roughly half of China’s urban population. The urban

heating sector accounts for about 25 percent of total commercial energy use north of the river. This

coal-based heating system has been inefficient for two major reasons. First, the heating facilities

were mostly built in the 1950s and 1960s based on standards of Soviet technology that do not allow

and Rapson (2014), Ito (2015), Ito, Ida and Tanaka (2018), Deryugina, MacKay and Reif (2020), and Shaffer (2020)
for studies based on administrative energy billing data in the United States, Japan, and Canada. Recently, researchers
have started to collect such data in developing countries: Mexico (Davis, Fuchs and Gertler, 2014), South Africa (Jack
and Smith, 2015, 2020), Colombia (McRae, 2015b,a), Brazil (Costa and Gerard, 2018), and Kenya (Lee, Miguel and
Wolfram, 2020).

4Deryugina, MacKay and Reif (2020) emphasize this point and estimate two-year responses to electricity prices
in Illinois. They find that Illinois households gradually responded to changes in electricity prices, which is consistent
with our findings for Chinese households. Another related study is Costa and Gerard (2018), but their study focuses
on persistent responses to a temporal policy shock and is therefore different from Deryugina, MacKay and Reif (2020)
and our study.

5For example, Wolak (2011) and Ito, Ida and Tanaka (2018) find that the introduction of residential dynamic
electricity pricing in the United States and Japan, which created increases in peak-hour prices by 100–300%, induced
10–15% reductions in electricity usage. Another policy that has been extensively studied in many developed countries
is information provision with peer comparison in energy usage, which typically induced 1–2% reductions in energy
use (Allcott and Rogers, 2014).
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households to control their heating and do not have meters to record household usage. Second,

without metered usage data, it has been practically impossible to provide incentives for households

to respond to market-based energy costs. Billing is based on a flat per square meter price for an

entire heating season, regardless of actual heating usage.

China’s Ministry of Housing and Urban-Rural Development (MOHURD), in collaboration with

the World Bank, piloted a reform in 2005 in seven cities to improve energy efficiency in the heating

sector. The reform created a market mechanism so that consumers pay for their actual heating

consumption. Individual manual or thermostatic valves are installed to enable households to control

indoor temperature, and household meters are installed to establish metering consumption and then

introduce consumption-based billing (CBB).

A common challenge to evaluate a metered price reform is that utility companies usually start

metered pricing right after meters are installed. Household metered data are therefore only observ-

able after the price reform, which prevents the comparison of household-level usage before and after

the reform. The city of Tianjin provides a unique opportunity to overcome this challenge. The

city government requires that the CBB starts at least one year after household meters are installed

and household-level metered data are collected. Household daily heating usage under the flat-rate

billing is metered for at least one heating season, making it possible to compare household usage

before and after the price reform.

2.2 Staggered Rollouts

The CBB was introduced in Tianjin in staggered rollouts between 2008 and 2016. The long window

of staggered rollouts enables us to estimate the policy’s long-run effect using an event-study design.

The vast majority of households in Tianjin live in condominiums, and, therefore, the rollouts were

done at the condominium building level. Thus, in our estimation, we cluster the standard errors

at the building level. There are 429 apartment buildings that had introduced consumption-based

billing by 2016, and there are 16,425 households in these buildings. Figure A.1 shows substantial

variation in the rollout by the number of households.

The city’s annual operating budget for the reform was constrained, which was the reason the

staggered rollouts spanned nine years. According to the city officials, the rollouts were done in an

unsystematic order, though the timing was not randomly assigned. Hence, our estimation relies on
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the standard identification assumptions for quasi-experimental event study design, as we describe

in Section 4. For example, we test if the rollout timings are correlated with building characteristics.

We do not find statistically significant relationships between the rollout timings and the observable

building characteristics, including year of building, square meters of residence, and house value, as

we discuss in Section 4.2.

Households are fully informed about the start of the new billing scheme. Before heating is turned

on in mid-November of the first season of CBB, the HOA office sends every household a letter in

October to announce the change in the billing method. At the same time, every household also

receives a user handbook from utility companies. The handbook explains the new billing policy in

detail, including how households can adjust indoor temperature, how household usage is metered,

how a consumption-based bill is calculated, etc.

Once a building was assigned to start CBB, all households were defaulted into CBB. However,

there was an option to opt out from CBB and stay with the pre-reform fixed payment. To do so,

households had to opt out before the first winter of CBB. In our data, we observe that about 70

percent of households complied with CBB and 30 percent of households opted out. For this reason,

we estimate the intention-to-treat (ITT) and the average treatment effect on the treated (ATET)

in Section 4.6

2.3 Price Variation Created by the Reform

Before the policy change, households paid an annual fixed charge equal to 3.97 dollars times their

residence’s square meters. For example, a household with 100 square meters of residence paid 397

dollars for every winter, regardless of how much heating was used.

After the policy change, a heating bill became a two-part tariff: 1) a new annual fixed charge

equal to 1.895 dollars times square meters, and 2) a variable charge equal to 1.4 cents per kWh

of heating usage.7 This policy change provides useful variation for our empirical analysis because

many consumers experienced an increase in marginal price but a decrease in average price. For

example, consider a household with 100 square meters of residence whose typical usage was 10,000

kWh per winter (usage per square meter is 100 kWh). The pre-reform payment was 397 dollars
6For both CBB compliers and non-compliers, we observe their daily metered heating usage.
7The regulator set the marginal price equal to the marginal cost based on information on heating production.
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with zero marginal price. With the same amount of usage, the post-reform payment would be 338.5

(= 198.5 + 0.014 · 10, 000) dollars with marginal price equal to 1.4 cents. Thus, given the same

amount of usage, this household experienced an increase in marginal price but a decrease in average

price.

Figure 1 visualizes how the CBB policy changed the marginal price and average price of heating

for a given level of usage per square meter. The change in marginal price was common to all

households—it changed from 0 to 1.4 cents per kWh. However, the change in average price depended

on heating usage per square meter. Given the same usage level, households whose usage per square

meter was less than 142 kWh were likely to experience a decrease in average price and the rest of

households were likely to experience an increase in average price. This implies that many consumers

were likely to experience an increase in marginal price but a decrease in average price, which is the

key variation we use in Section 5.

3 Data

3.1 Household Heating Usage Data

We obtained administrative data on household-level daily heating usage from a regulated heating

provider in a district of Tianjin. The data cover usage for all of the provider’s residential customers

from December 2007 to February 2019. Heating usage is automatically recorded once a day and

uploaded to the provider’s database. With a confidentiality agreement, we obtained direct access to

the database. To our knowledge, our study is among the first to use such high-frequent administra-

tive data on energy usage in developing countries. Most previous studies in developing countries rely

on survey data on energy usage, which could suffer from issues of self-selection and measurement

errors.

Every year, a winter heating season starts in mid-November and ends in mid-March. Each year’s

exact start date in November and end date in March depend on that year’s temperature. To make

our analysis consistent between years, we focus on daily usage in three full months of a heating

season—December, January, and February. In these three months, heating is on every day of every

year so that we do not have missing days for any year. In our empirical analyses, we aggregate the

household daily data to the household-by-month level, and we analyze average daily heating usage
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by household and month.

All households in our data have at least one year of metered heating data (three winter months)

prior to the start of the CBB. For about 40% of households, we observe at least two years of

metered heating data in the pre-reform period (six winter months). For the post-reform period, all

households have at least three years of metered heating data.

We observe daily heating usage data from 16,425 households in 429 buildings. We also observe

each household’s address, apartment number, square meters, and house value. Table 1 reports

summary statistics. The average heating usage is 95 kWh per day and 11,600 kWh per winter. The

average heating bill per winter is 413.6 dollars before the reform and 370.6 dollars after the reform.

The average size of residence is 105.3 square meters. The take-up rate of the consumption-based

billing is 70%.

3.2 Air pollution data

To examine the impact of the heating price reform on environmental externalities, we ask two

questions: 1) does the change in household heating usage at home, induced by the reform, affect

pollution emissions at the heating plant of the utility company? and 2) how does local ambient air

quality change?

Our research site, a district of Tianjin, provides an interesting setting to answer these questions.

First of all, the heating plant is located close to the residential area where most households in our

data live, and a monitor of ambient air pollution is located in this residential area. The heating

plant is a major local emitting source in winter and is about 8 kilometers away from the pollution

monitor. We would expect that, if changes in household heating usage affect pollution emissions of

the plant, the local ambient air quality might also be affected. Second, the district of our study is

located in a relatively isolated part of Tianjin, about 55 kilometers away from the Tianjin metro

area. The remoteness of its location is useful for our analysis because other emitting sources in the

metro area are less likely to affect local air quality in this district.

We obtained pollution data from two sources. To measure pollution emissions of the heating

plant, we collected hourly emission concentrations for SO2, NOx and PM from the Continuous

Emission Monitoring System (CEMS) monitor placed at the heating plant. To measure local ambient

air quality, we compiled daily readings of SO2, PM10 and PM2.5 from the pollution monitor in this
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district. The PM10 readings are particularly useful for the welfare analysis on externalities, because

we can combine the changes in PM10 with the measure of marginal willingness-to-pay for PM10 in

Ito and Zhang (2020) to measure the changes in welfare gain from externalities.

4 Impacts of the Consumption-Based Billing on Heating Usage

In this section, we estimate the causal effect of the CBB on heating usage. As described in Section

2.2, the CBB was implemented with an opt-out option, and about 30% of households opted out.

This created one-sided incomplete compliance because all households in the control group were

untreated, while there was incomplete compliance in the treatment group. For this reason, we

estimate both the intention-to-treat effect (ITT) and the average treatment effect on the treated

(ATET).

4.1 Overall Policy Impacts

We begin by estimating the ITT. Our identification strategy is based on the staggered rollout of

the CBB as described in Section 2.2. Our estimating equation is,

yit = αi + γt +
b∑

k=a

φkD
k
it + uit, (1)

where yit is the natural log of average daily heating usage for household i in year-month t, αi

indicates household-level fixed effects, and γt indicates year-month fixed effects. We use k = [a, b]

to denote the event-time relative to the first month of treatment. For example, k = 0 is the last

month of the pre-treatment period and k = 1 is the first month of treatment. Note that we use

data from three winter months, between the first day of December and the last day of February.

Therefore, if we consider a household whose first treatment month was December 2010, k equals 0

in February 2009, 1 in December 2010, 2 in January 2011, 3 in February 2011, 4 in December 2012,

and etc. Dummy variables Dk
it = 1 if year-month t falls within the event-time k for household i.

Recent developments in the econometrics literature highlight that conventional OLS could pro-

duce biased estimates for two-way fixed effect models such as equation (1) if treatment effects are

heterogeneous across households and/or time (de Chaisemartin and D’Haultfœuille, 2020; Callaway
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and Sant’Anna, 2021). To address this problem, we use a method developed by de Chaisemartin

and D’Haultfœuille (2020) to estimate equation (1) so that we do not impose the assumption of

homogeneity in the treatment effects. For comparison, we also show our results based on the con-

ventional OLS in Appendix A. We indeed find that the results are different when we impose the

assumption of homogeneity in the treatment effects. de Chaisemartin and D’Haultfœuille (2020)

show that the reason why the conventional OLS may not produce the correct average treatment

effects is because it produces an incorrectly weighted average of treatment effects across cohorts

and time. Moreover, some of these incorrect weights can be negative in theory, which could make

the OLS estimates significantly different from the correctly weighted average of the cohort-by-time

treatment effects. In Figure A.4, we show that this is indeed the case in our data. We find that

46% of cohort-by-time weights are negative if we use the conventional OLS, which suggests that it

is important to incorporate heterogeneity in the treatment effects in our setting.8

The primary variables of interest are φk. These coefficients provide the ITT estimates of mean

log average daily usage for event time k, controlling for household fixed effects and time fixed effects.

The excluded group is k = −1, the last month of the pre-treatment period. Thus, we can interpret

φk as the difference in mean log average daily usage between event month k and the last month of

the pre-treatment period. We need identification assumptions that are standard in the difference-in-

differences method. In the absence of the treatment, there would be no difference in mean log usage

between the event months—that is, k would be zero. The validity of this identification assumption

is untestable, but we can assess if the parallel trend assumption is consistent with data in the

pre-treatment period.

In Figure 2, we show the estimates of φk in k = [−5, 9]—between two years before and three years

after the reform. This figure provides three key results. First, there is no statistically significant

pre-existing trend before the treatment. Second, the ITT estimate for the first year is about a 10

percent reduction in heating usage. Third, the policy impact is similar in the second and third years

after the policy implementation.

[Figure 2 about here]
8Results in an earlier version of our working paper were produced by the conventional OLS with two-way fixed

effects. In Appendix A, we compare estimation results based on de Chaisemartin and D’Haultfœuille (2020) and
those based on the conventional OLS and provide a discussion in detail.
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In Table 2, we provide the ITT estimates of the CBB for each of the three post-reform years in

column 1. These results suggest that the CBB resulted in reductions in heating usage by 10.1% in

the first year, 10.7% in the second year, and 8.7% in the third year (−0.107, −0.113, and −0.091

log points, respectively).9 These results are consistent with the findings in Figure 2.

[Table 2 about here]

In column 2 of Table 2, we provide the ATET of the CBB for each of the three post-reform

years. We estimate equation (1) by replacing the treatment assignment Dk
it by household i’s actual

treatment status T k
it in event time k. We use Dk

it as instruments for T k
it to obtain the IV estimates.

With the standard assumptions required for the local average treatment effects (Imbens and Angrist,

1994), the IV estimates can be interpreted as the ATET because the incomplete compliance due to

the opt-out decision was only in the treatment group. The ATET of the CBB are 14% in the first

year, 15% in the second year, and 12% in the third year (−0.153, −0.161, and −0.13 log points,

respectively).

4.2 Validity of the Identification Assumptions

The validity of our quasi-experimental approach is subject to a standard set of identification as-

sumptions for the difference-in-differences method with staggered rollouts. A key assumption is the

parallel trend in the counterfactual outcome—in the absence of the treatment, the trajectory of

the outcome variable (i.e., heating usage in our context) has to be parallel between treatment and

control groups. Although this is an untestable assumption, we provide two pieces of supporting

evidence. The first evidence is the absence of pre-existing trends in Figure 2. The trajectory of

heating usage was not statistically different between the treatment and control groups prior to the

treatment periods. Second, we test if building characteristics are associated with the staggered tim-

ings of the policy implementation. We do not find statistically significant relationships between the

timings of the CBB rollout and the vintage of building, size of residence, house value, and annual

heating usage prior to the CBB in Table A.1.

To interpret our IV estimates as the ATET, we also need the standard set of assumptions for

the LATE (Imbens and Angrist, 1994). A potential concern is that the Stable Unit Treatment
9yit is heating usage in log. Therefore, φk (−0.107, −0.113, −0.091 in column 1 of Table 2) provide the ITT

estimates in log points. The ITT estimates in percentage changes can be obtained by exp(φk)− 1.
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Value Assumption (SUTVA) can be violated if a household’s usage is affected by other households’

compliance decisions. To examine this concern, we test if the change in household heating usage is

correlated with the compliance rate of its neighbors. In Table A.3, we do not find statistically sig-

nificant correlation between one’s response to the CBB and the compliance status of one’s neighbors

either next door or in upper and lower floors.

4.3 Interpretation of the Overall Impacts of the CBB

Overall, the findings in Table 2 indicate that the CBB resulted in statistically and economically

significant changes in heating usage. Reductions in residential energy usage by 10% in the ITT and

15% in the ATET are sizable relative to the estimates of other policies evaluated in the literature.

For example, the effects of non-price energy conservation programs such as home energy reports

with peer comparisons usually produced 1-2% reductions in residential energy usage (Allcott, 2011).

The short-run effects of dynamic electricity pricing are found to be between 10% and 15% (Wolak,

2010; Ito, Ida and Tanaka, 2018, forthcoming).

In addition, the staggered rollout of the CBB allows us to estimate long-run effects, which are

challenging to estimate in most existing studies because obtaining long-run exogenous variation

in energy price is generally difficult.10 Our results suggest that the CBB produced long-lasting

reductions in heating usage for at least three years after the introduction of the policy.

Hence, if a policymaker’s objective is to reduce residential heating usage, our analysis in this

section indicates that the CBB is effective to produce long-lasting sizable impacts. However, as we

show in detail in Section 7, the welfare implications of the CBB depends on whether consumers

distinguish between fixed and variable costs when they are faced with a two-part tariff such as the

CBB. For this reason, we investigate this question in the next section before we consider the welfare

implications of the CBB in Section 7.
10Most studies in the literature on residential energy demand estimate short-run effects based on price variation

that lasted for a few months to a year (Wolak, 2010; Ito, Ida and Tanaka, 2018). Few papers are able to estimate
long-run effects, including Allcott and Rogers (2014) and Deryugina, MacKay and Reif (2020).
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5 Do Consumers Distinguish Fixed Cost from Variable Cost?

In Section 4, we find that the CBB induced overall reductions in heating usage on average. However,

this finding by itself does not reveal whether consumers distinguished between fixed and variable

cost in responding to the introduction of the two-part tariff. In this section, we exploit the price

variation created by the CBB to test this question. As we show in section 7, testing this hypothesis

is key to the welfare implications of the CBB and two-part tariffs in general.

5.1 Conceptual Framework

Consider a utility maximization problem for heating demand y. A consumer has income I, marginal

price of heating p, and fixed charge f . We consider a quasi-linear utility function u = v(y) − py −

f + I.11 A standard utility maximization problem simply solves the first order condition for the

utility function with respect to y, leading to v′(y∗) = p. Therefore, the optimal usage y∗ can be

obtained when the marginal utility from heating usage equals marginal price. In particular, this

standard model predicts that an increase in marginal price should result in a decrease or no change

in heating usage.

In contrast, Liebman and Zeckhauser (2004) suggest the “schmeduling” model as an alternative

model of consumer behavior. A consumer who is faced with nonlinear pricing may misperceive

a change in average price (pa) as a change in marginal price. Two-part tariffs could create this

misperception if a consumer does not properly distinguish between changes in fixed costs and changes

in variable costs. In this case, the optimal usage can be characterized by v′(y∗∗) = pa. Importantly,

the shmeduling model predicts that an increase in marginal price could result in a increase in heating

usage when a consumer has an increase in marginal price but a decrease in average price.

5.2 Empirical Tests for Schmeduling

We propose a simple non-parametric test for the schmeduling with a two-part tariff. Our approach

exploits the unique price variation created by the introduction of the CBB. As we described in

Figure 1, some consumers in our data experienced a policy-induced increase in marginal price and
11A quasi-utility function assumes that there is no income effect. This assumption is likely to be valid in our

empirical context because the income effect of the CBB policy was likely to be very small. We explore this point in
Section 6.2.
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a decrease in average price. This is because the CBB increased the marginal price and lowered the

fixed charge. We use β to denote the impact of the CBB on heating usage for these consumers. As

we described in the conceptual framework in Section 5.1, the standard model predicts that β ≤ 0,

but the schmeduling model predicts that β > 0. Therefore, we can apply the estimation method

described in Section 5 to the subgroup of consumers to conduct this simple statistical test. An

advantage of this test is that we do not need to impose functional form assumptions on the demand

curve. We simply test how the marginal changes in price affected heating consumption.

A naive way to identify this subset of consumers is to look at the actual average price paid by

each consumer. This approach would, however, create an endogeneity concern because the actual

average price is a function of contemporaneous heating usage. To address this issue, we follow

the literature on nonlinear income taxation and pricing and identify the policy-induced change in

average price (Saez, Slemrod and Giertz, 2012; Ito, 2014). For each customer, we construct the

predicted changed in average price by using their heating usage two years prior to the introduction

of the CBB. This predicted change in average price does not depend on each customer’s heating

usage after the introduction of the CBB, and therefore is purely driven by the changes in the price

schedule induced by the policy change. Consistent with the previous studies in this literature, we

find that the predicted change and actual change are highly correlated, as we show below.

We begin by testing for visual evidence in Figures 3. We divide households into a decile based

on the predicted change in average price. Separately for each decile group, we estimate the ITT

effect of the CBB using the estimation method described in Section 5. Recall that all consumers

had the same change in marginal price—an increase in marginal price by $0.014 per kWh. However,

the changes in average price were different across groups. The decile groups 1 to 3 had decreases,

the decile group 4 had nearly no change, and the decile groups 5 to 10 had increases in average

price.

[Figure 3 about here]

The standard model predicts that all groups would reduce usage because everyone had an in-

crease in marginal price. However, the changes in heating usage in Figure 3 are inconsistent with

this prediction. The decile groups 1 to 2 have increases, the decile groups 3-4 has nearly no change,

and the decile groups 5 to 10 have decreases in heating usage. The relationship between the changes
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in average price and the changes in usage suggest that the empirical evidence is more consistent

with the schmeduling model.

With the insight from Figure 3, we conduct statistical tests for schmeduling in Tables 3 and 4.

Our procedure is similar to the approach used in Figure 3 except that we use a quartile rather than

a decile to increase the precision of the statistical tests. We divide households into a quartile based

on the predicted change in average price. Separately for each quartile group, we estimate the ITT

effect of the CBB using the estimation method described in Section 5.

[Table 3 about here]

Table 3 shows that while all groups had the same increase in marginal price, quartile group 1 had

a decrease, the group 2 had nearly no change, and groups 3 and 4 had increases in average price. For

quartile group 1, the CBB increased heating usage by 0.216 log points (a 24.1 percent increase).12

For quartile group 2, the impact of the CBB on heating usage is statistically insignificant from zero.

In Table 4, we provide further analyses by focusing on quartile group 1, who experienced policy-

induced increase in marginal price and decrease in average price. The first row includes all customers

in this quartile to reproduce the results shown in column 1 of Table 3. The null hypothesis that

consumer behavior is consistent with the standard economic model (against the schmeduling model)

is H0 : β ≤ 0, in which β is the ITT of the CBB on heating usage. We provide the p-value of this

test in the last column. We reject this null at the 1% statistical significance level for the full sample,

indicating that consumer behavior is inconsistent with the standard model.

[Table 4 about here]

We also examine if there are subgroups of customers who might behave more consistently with

the standard model. We further divide quartile group 1 by home value in rows 2 and 3 and by home

sizes in rows 4 and 5. Although the magnitudes of the ITTs are heterogeneous across these groups,

we reject the null of the standard model for all of these subgroups.

In Tables A.4 and A.5, we provide the same analyses based on the ATET instead of the ITT.

We find that qualitatively, our findings do not change if we use the ATET and we reject the null
12As we explained above, the treatment effect in log points (β) can be converted to the the percent change by

exp(β)− 1.
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for all subgroups based on the ATET as well. In fact, the ATET rejects the standard theory more

strongly than the ITT because the ATET on consumption is larger than the ITT on consumption

in absolute value as we have one-sided incomplete compliance.13

5.3 Mean Reversion and Validity of Identification Assumptions

The empirical evidence in the previous section suggests that consumer behavior is inconsistent with

the standard economic model and more consistent with the schmeduling model. An important factor

that we want to be careful about is mean reversion in the outcome data and its possible threat to

identification in consumer behavior with nonlinear price schedules (Saez, Slemrod and Giertz, 2012;

Ito, 2014). Many types of economic panel data, including household-level heating consumption, tend

to have mean reversion. For example, consider a household who had a negative (positive) transitory

shock to their heating consumption in one period. Then, this household’s consumption tends to be

higher (lower) in other periods because of mean reversion. This natural mean reversion is important

to be considered when researchers analyze consumer behavior in nonlinear price schedules.

In our context, we calculate each household’s policy-induced change in average price using their

consumption in the pre-CBB baseline period. Consider a household whose usage was low in the

pre-CBB baseline period. Naively comparing their usage in the baseline period against their usage

in other periods could lead to a misleading conclusion if this household had a transitory negative

shock in the baseline period. Their usage will be higher in other period because of mean reversion,

not necessarily because of the policy impact.

Our empirical analysis controls for this mean reversion by using the staggered DID design pre-

sented in the previous sections. Instead of naively comparing a treated household’s usage before and

after the CBB, our staggered DID design uses data from untreated households to control for time-

varying changes in usage, including mean reversion. To make it clear, consider example households

A and B who had an identical level of consumption in the pre-CBB baseline period. Suppose that in

the staggered rollout of the CBB, household A started the CBB several years earlier than household

B. In this example, our staggered DID design controls for the mean reversion for household A by

using data from household B.
13In our context, consumers could have opted out from the CBB once they are assigned to treatment, but those

who were not assigned to treatment were not able to have the CBB. Therefore, the ITT eqals to the products of the
ATET and take-up rate, and thus, the ATET is larger than
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A key assumption in this approach is the standard parallel trend assumption—time-varying

unobserved factors that affect heating usage, including the mean reversion, should not be system-

atically different between households who had an earlier rollout of the CBB and those who had a

later rollout.

This identification assumption is unstable, as is the case for any DID design with quasi-experimental

data, but we can assess the validity of the assumption by examining the pre-trend data in the event

study figure in Figure 4. The pre-trends suggest that time-varying unobservable factors that af-

fect heating usage are not systematically different between treated and untreated households in the

pre-CBB period. In particular, if mean reversion is the reason for an increase in usage for quartile

group 1 and decreases in usage for quartiles 3 and 4, we should observe these changes in usage in

all years, including the years before the CBB.14 However, Figure 4 suggests that we do not observe

such changes until the beginning of the CBB. This provides supporting evidence that time-varying

unobservable factors including mean reversion are unlikely to be systematically different between

households with different rollout timings.15

[Figure 4 about here]

6 Alternative Explanations

In the previous sections, we find empirical evidence that is consistent with the prediction from the

schmeduling model. We explore three alternative explanations in this section.

6.1 Category Budgeting

The category budgeting model suggests that households may keep track of category-specific budgets

and try to maintain category spending at a target level (Heath and Soll, 1996; Antonides and Raaij,

2011; Hastings and Shapiro, 2013). Hastings and Shapiro (2013) show that one way to model this
14Recall that we use the first-available year’s data in the pre-CBB period to define the quartile groups. Therefore,

if mean reversion drives the increase or decrease in usage, we should observe it before the start of the CBB including
one and two years before the CBB. However, the pre-trend in these figures do not show such evidence.

15In addition, we provide further robustness checks in Table A.2 and Figure A.3. In these analyses, we include
further flexible controls for mean reversion by interacting the time fixed effects with the calendar year of the pre-CBB
baseline period. In this way, we can allow mean reversion and other time-varying unobservable factors to be different
between households whose pre-CBB baseline period fell in different calendar years. We find that the results are robust
to these controls.
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behavior is to consider that households experience disutility from spending an atypical amount on a

certain good. In our context, this model implies that consumers experience disutility from spending

a different amount of money on heating in the new price schedule (the two-part tariff) as compared

to what they used to pay in the old price schedule (the fixed payment).

We test if consumer behavior in our data is consistent with the categorical budgeting model. To

do so, we exploit the opt-out structure of the reform. Recall that households could opt-out from

the new pricing if they wanted to stay with the old pricing. If households wanted to maintain the

pre-reform level of heating expenditure, the most obvious way to do so would be to opt out from

the new pricing. Importantly, the category budgeting model implies that the incentive to opt out

was equally large for those who expected a large increase in payment and those who expected a

large decrease in payment with the new pricing.

We test this prediction in Figure 5. For each household, we calculate the predicted change in

annual billing based on their pre-CBB heating usage. That is, we calculate how much a household

would pay more (or less) with the CBB compared to the old pricing if they use the same amount of

heating. The horizontal line in the figure is the decile of the predicted change in annual billing. The

dashed line shows the average change in annual billing for each decile group, which ranges from a

decrease of about 150 dollars to an increase of about 150 dollars. The solid line shows the opt-out

rate relative to the opt-out rate for the decile group 1. We find that the opt-out rate is monotonically

increasing—-that is, those who expected an increase in payment were more likely to opt out, and

those who expected a decrease in payment were less likely to opt out. This empirical finding is

inconsistent with the prediction from the category budgeting model. This evidence is consistent

with the response to average price because the signs and directions of the predicted changes in

annual billing are the same as those of the predicted changes in average price.

[Figure 5 about here]

6.2 Income Effect

In Section 5.1, we consider a quasi-utility function, which abstracts from the income effect. In

theory, a change in fixed cost could create an income effect that affects heating usage. However, in

our empirical setting, the income effect of the CBB is likely to be very small.

21



The CBB reduced the fixed cost of heating by $226 per year. The average household income in

Tianjin in our sample period was $15,041. Therefore, the change in the fixed cost was about 1.5

percent of household income. In the literature on energy demand, the short-run residential income

elasticity estimates are found to be moderately inelastic and estimated around 0.239 on average

based on a recent meta analysis (Zhu and Yang, 2018). This implies that the income effect of the

CBB would be an increase in heating usage by 0.36 percent.

This effect is too small to explain our findings in Table 4. We find that customers who experi-

enced an increase in marginal price and a decrease in average price increased usage by 24.1 percent

(a 0.216 log-point increase), which is a lot larger than 0.36 percent. To explain this finding by the

income effect, the short-run income elasticity of heating demand would have to be 16.07, which is

far larger than upper bounds of empirical findings in the literature.

6.3 Spurious Correlations

Recall that customers who experienced an increase in marginal price and a decrease in average price

were those who had relatively low usage per square meter before the introduction of the CBB (see

Figure 1). One potential concern is that this customer type is correlated with other important

household characteristics, and this type of customer increased usage in response to the CBB for a

reason unrelated to their average price.

An example of potential spurious correlations is the location of housing units. For instance,

although we showed in Section 4.2 that one’s response to the CBB is unlikely to be affected by their

neighbors in our setting, we could consider the following hypothesis. Consider households who were

in the middle floors or non-corner units and suppose that they received heating spillovers from their

neighbors prior to the reform. For this reason, their pre-reform usage per square feet can be lower

than others. After the reform, many neighbors reduced usage, and therefore, these particular types

of households needed to increase usage.

We test this hypothesis in Table A.6 in the appendix. In Panel A, we estimate the ITT of

the CBB policy separately for households living on middle floors vs. top/bottom floors. Similarly,

in Panel B, we estimate the ITT of the CBB policy separately for households living in corner vs.

non-corner units. In each panel, we find that both types of customers reduced usage. If anything,

the reduction in usage was larger for those who were on the middle floor and those how were in
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non-corner units in the point estimates. These findings are inconsistent with the hypothesis above.16

7 Welfare Implications

In Figure 6, we describe the social welfare gains from the CBB. Panel A considers the standard

theory of consumer behavior on a two-part tariff. This model assumes that consumers distinguish

between fixed and variable cost, and therefore, their consumption is determined by the intersection

of their demand curves and marginal price. In this case, both consumers A and B in the figure

would reduce usage because the CBB increased the marginal price of heating from 0 to $0.014 per

kWh. Then, the social welfare gains from the CBB would be the shaded areas under the social

marginal cost.

[Figure 6 about here]

In contrast, the welfare implications are different with the schmeduling model in Panel B. In

this model, consumers do not distinguish between fixed and variable costs, and they respond to

their average price. This implies that for consumer B in the figure, the reduction in usage is smaller

than the one in Panel A because the change in average price is smaller than the change in marginal

price. Moreover, consumer A would increase usage because the CBB lowered the average price.

This implies that the change in social welfare is negative for consumer A in this case.17

In Table 5, we use our data and empirical findings to calculate the policy’s social welfare gains

based on the two approaches shown in Figure 6.18 In the first two columns, we calculate the social

welfare gain per household per year. Our estimate suggests that the standard approach overstates

the welfare gain. By incorporating the schmeduling, we estimate that the social welfare gain from

the CBB is 6.3 USD per household per year, which is 26.8 million USD per year for the city of

Tianjin.
16To locate households living in corner units and non-corner units, we collected information on building structure

and apartment locations. In buildings that host three households per floor, four households per floor and eight
households per floor, one can clearly define corner units vs. non-corner units. We therefore focus on this sub-sample
in Panel B.

17Note that in theory if the social marginal cost is low enough, the social welfare gain for consumer A can be positive
because the socially optimal level of consumption can be closer to yA1 than yA0 in that case. However, empirically we
find a substantial level of environmental externalities in Appendix B. We draw the social marginal cost in the figure
consistent with our empirical setting.

18In Appendix B, we use ambient air pollution data to calculate the negative environmental externalities. We add
these externalities and the private marginal cost of heating to compute the social marginal cost.
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[Table 5 about here]

Our analysis suggests that incorporating the schmeduling behavior could substantially change

the welfare implications of the two-part tariff. In the implementation of the CBB, the city of Tianjin

reported that the one-time cost of introducing CBB—including the cost of installing meters—was

about 99 USD per household. With China’s 3% discount rate in 2015, the conventional approach

based on the standard theory suggests that the policy’s net present value of the benefit would exceed

its cost in about 4 years, whereas the schmeduling model implies that it takes about 21 years to

be cost-effective. This result suggests that the CBB is still likely to be a cost-effective policy in

terms of the social welfare gain in the long run, but the cost-benefit analysis would substantially

overestimate the benefit if the shmeduling behavior is not took into account.

Finally, we also evaluate if the CBB increased or decreased the consumer surplus. The consumer’s

surplus is another important welfare measure, as it may be challenging to obtain political support

for a policy if many consumers would have decreases in consumer surplus even if the CBB results

in an overall increase in social welfare.

We find that the CBB resulted in an increase in consumer surplus by 172 USD per household

per year on average. We also calculate the change in consumer surplus by home value, which is a

proxy for wealth. We find that the CBB increased the consumer surplus by 119 USD per household

per year for households in quartile 1 of home value, 202 USD in quartile 2, 191 USD in quartile

3, and 249 in quartile 4. These findings suggest that the CBB resulted in an increase in consumer

surplus for a broad set of the population.

8 Conclusion

In this paper, we examine long-run effects of a recent heating pricing reform in China that replaced

fixed payment with a two-part tariff. Using staggered policy rollouts and administrative data

on household-level daily heating consumption, we find that the reform induced significant and

persistent reductions in heating usage. We find that consumer behavior in our data is inconsistent

with the standard economic theory that assumes that consumers properly distinguish fixed cost

from variable cost and more consistent with the “schmeduling” model in Liebman and Zeckhauser

(2004). As we show its policy implications for two-part energy tariffs, this consumer behavior makes
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fixed cost directly relevant to the perceived relative prices of goods, and therefore, alters the welfare

implications of price, tax, and subsidy designs.
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Figures

Figure 1: Policy-Induced Changes in Marginal and Average Prices
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Notes: This figure shows the changes in marginal price and average price induced by the introduction
of the consumption-based billing policy. All consumers had the same change in marginal price, but the
policy-induced changes in average price depended on heating usage per square meter, and some consumers
experienced an increase in marginal price and a decrease in average price.
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Figure 2: Staggered Difference-in-Differences Analysis: Intention-to-Treat (ITT)

Two years
before CBB

One year
before CBB

First year Second year Third year
-.2

-.1
5

-.1
-.0

5
0

.0
5

.1
ln

(d
ai

ly 
he

at
in

g 
us

ag
e)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Month relative to the introduction of CBB

Notes: This figure shows the ITT estimates of the staggered difference-in-differences analysis described
in equation (1) based on the estimation method developed by de Chaisemartin and D’Haultfœuille (2020).
There are three heating months in each year because the heating season is December, January, and February.
The bars indicate the 95 percent confidence intervals. Standard errors are clustered at the building level.
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Figure 3: Policy-Induced Changes in Average Price and Usage
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Notes: We divide customers by decile based on their policy-induced changes in average price. For each decile,
we estimate the ITT of the CBB on the log of heating usage based on the difference-in-differences estimation
method developed by de Chaisemartin and D’Haultfœuille (2020). We also apply the same method to
estimate the ITT on the log of the policy-induced change in average price. The bars indicate the 95 percent
confidence intervals. Standard errors are clustered at the building level.
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Figure 4: Staggered Difference-in-Differences by Quartile of the Policy-Induced Change in Average
Price
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b) Quartile 2
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c) Quartile 3
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d) Quartile 4
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Notes: This figure shows the ITT estimates of the staggered difference-in-differences analysis described in
equation (1) based on the estimation method developed by de Chaisemartin and D’Haultfœuille (2020).
There are three heating months in each year because the heating season is December, January, and February.
The bars indicate the 95 percent confidence intervals. Standard errors are clustered at the building level.
We divide customers by quartile based on their policy-induced changes in average price. We then estimate
equation (1) for each quartile group separately to make these event study figures.
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Figure 5: Household Opt-out Decision
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Notes: The consumption-based billing was introduced with an option to opt-out, and about 30% of customers
in our data opted out. In this figure, we examine if the opt-out decision was related to the predicted change
in annual payment at each customer’s average heating usage in the pre-reform period. The blue solid line
shows opt-out rates relative to the 1st decile of predicted change in annual billing. The orange dashed line
shows the average predicted change in the annual bill. This suggests that selection was positively related to
the expected gain from the policy, which is consistent with selection on the level in ? and ?.
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Figure 6: Welfare Implications
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Notes: These figures show the social welfare gains from the CBB based on two alternative assumptions
regarding consumer behavior. Panel A considers the standard theory of consumer behavior on a two-part
tariff. Panel B considers the schmeduling model, in which consumers do not distinguish fixed cost from
variable cost, and therefore respond to average price. These figures suggest that the social welfare gains
depend on whether consumers respond to the two-part tariff as predicted by the standard model or the
schmeduling model.
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Tables

Table 1: Summary Statistics

Variable Mean (Standard Deviation)

Average daily heating usage (kWh) 95.27
(49.87)

Total heating usage per heating season (kWh) 11600
(6261)

Heating bill per heating season before CBB (dollar) 413.6
(172.0)

Heating bill per heating season after CBB (dollar) 370.6
(146.0)

Square meter of the residence 105.3
(41.01)

Take-up rate of the CBB policy 0.70
(0.46)

Number of households 16,425
Observations (household-by-month) 278,041

Table 2: Impacts of the Consumption-Based Billing on Heating Usage

Dependent variable: Log of daily heating usage
ITT ATET

First year of CBB -0.107 -0.151
(0.014) (0.024)

Second year of CBB -0.113 -0.163
(0.031) (0.035)

Third year of CBB -0.091 -0.134
(0.030) (0.043)

Observations 278,041 278,041

Notes: This table shows the estimation results of equation (1). The estimation includes household fixed
effects and year-by-month fixed effects. Standard errors in parentheses are clustered at the building level.
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Table 3: Impacts of the CBB by the Quartiles of the Predicted Changes in Average Price

Dependent variable: Log of daily heating usage
ITT

Quartile 1 Quartile 2 Quartile 3 Quartile 4

CBB 0.216 0.019 -0.159 -0.154
(0.060) (0.052) (0.060) (0.028)

Observations 61,495 70,262 52,715 61,473
Change in Marginal Price 0.014 0.014 0.014 0.014
ITT on ln(Average Price) -0.221 0.044 0.190 0.270
ITT on ln(Predicted Average Price) -0.116 0.055 0.057 0.230

Notes: We divide customers by quartile based on their policy-induced changes in average price and estimate
equation (1) for each quartile group separately. The estimation includes household fixed effects and year-by-
month fixed effects. Standard errors in parentheses are clustered at the building level.

Table 4: Testing for Schmeduling

ITT H0: β ≤ 0

Marginal ln(Predicted ln(Actual ln(Usage) (p-value)
price average price) average price)

Full sample 0.014 -0.116 -0.221 0.216 0.0002
(0.005) (0.047) (0.060)

Households with 0.014 -0.117 -0.166 0.170 0.038
home value > median (0.009) (0.065) (0.096)

Households with 0.014 -0.113 -0.182 0.153 0.007
home value ≤ median (0.008) (0.054) (0.063)

Households with 0.014 -0.115 -0.155 0.175 0.07
home size > median (0.009) (0.072) (0.120)

Households with 0.014 -0.117 -0.229 0.194 0.002
home size ≤ median (0.008) (0.056) (0.068)

Notes: As described in the text, we use households who are in the first quartile of the policy-induced change
in average price to provide a test for schmeduling. In this table, we report the ITT estimates for this group.
Standard errors in parentheses are clustered at the building level.
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Table 5: Welfare Implications

Welfare gain per household Welfare gain for Tianjin
(USD/year) (million USD/year)

Standard Schmeduling Standard Schmeduling

Total social welfare gain 25.5 6.3 109.3 26.8

Notes: This table shows the social welfare gain from the consumption-based billing based on two different
assumptions regarding consumer behavior. Columns 1 and 3 consider the standard theory of consumer
behavior on a two-part tariff. Columns 2 and 4 consider the schmeduling model, in which consumers do not
distinguish fixed cost from variable cost, and therefore respond to average price.
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Appendix A: Results using the OLS with Two-Way Fixed Effects

Recent developments in the econometrics literature highlight that the OLS could produce biased

estimates for two-way fixed effects models such as equation (1) if treatment effects are heteroge-

neous across households and/or time (de Chaisemartin and D’Haultfœuille, 2020; ?). To address

this problem, in our main analysis in the paper, we use a method developed by de Chaisemartin

and D’Haultfœuille (2020) to estimate equation (1) so that we do not impose the assumption of

homogeneity in the treatment effects.

In this appendix, we compare our estimation results based on the method developed by de Chaise-

martin and D’Haultfœuille (2020), which we report in Table 3, and our estimation results based on

the conventional OLS with two-way fixed effects, which we report in Table A.7 in this appendix.

We also would like to note that an earlier version of our working paper also used the conventional

OLS with two-way fixed effects.

We find that the results are indeed different between the two estimation methods. de Chaise-

martin and D’Haultfœuille (2020) show that the conventional OLS does not produce the correct

average treatment effects when the treatment effects are heterogeneous across individuals and/or

time. This is because the conventional OLS produces an incorrect weighted average of treatment

effects across cohorts and time. In addition, some of these wrong weights can be negative.

To be more precise, de Chaisemartin and D’Haultfœuille (2020) define cohort g and time t for

a staggered difference-in-differences method. Cohort g is the group of units who share the timing

of the start of treatment. t is the time period of the data. de Chaisemartin and D’Haultfœuille

(2020) show that E
[
β̂OLS

]
= E

[∑
g,tWg,t∆g,t

]
, where β̂OLS to be an estimate from the OLS with

two-way fixed effects, ∆g,t is the ATE for group g and time t, and Wg,t is weights summing to one.

IfWg,t are the relative sample size in (g, t), E
[
β̂OLS

]
is equal to the ATE across (g, t). However,

de Chaisemartin and D’Haultfœuille (2020) shows that Wg,t in the OLS are not necessarily equal

to the relative sample size in (g, t) when the treatment effects are heterogeneous across g and/or

t. Moreover, many of Wg,t can be negative. If many of Wg,t are negative, E
[
β̂OLS

]
could have an

opposite sign of the correct ATE over (g, t).

38



To explore this point in our data, we use the approach developed by de Chaisemartin and

D’Haultfœuille (2020) to compute the weights Wg,t in the conventional OLS with two-way fixed

effects. In our application, the cohorts (g) are defined by the staggered timings of the introduction

of the CBB, and the time (t) is year-by-month.

In Figure A.4, we show Wg,t against the “correct” cohort-by-time weights, which are the relative

sample size across the cohort-by-time cells. If the OLS uses weights that are equivalent to the correct

weights (i.e., the OLS weights and correct weights line up at the 45-degree line in the figure), we

can obtain the correct average treatment effect using the OLS.

However, the figure shows that many weights are not on the 45-degree line. Furthermore, 46%

of the weights used by the OLS are negative. These results imply that the OLS estimates could be

substantially different from the ATE and even could have a wrong sign. Indeed, we find that the

sign of the estimates are different between the two methods for the quartile group 1 (column 1 in

each table).

de Chaisemartin and D’Haultfœuille (2020) and ? describe that the OLS with two-way fixed

effects could produce biased estimates because it effectively uses all units, including already-treated

units, as control units. The estimation methods developed by de Chaisemartin and D’Haultfœuille

(2020), which we use in our main analysis, address this problem. Another alternative approach is

to use OLS to estimate a cohort-specific treatment effect. We divide our sample into cohorts based

on the staggered timing of the introduction of the CBB. For each cohort, we use households who

were not-yet-treated as a clean control group, which allows the cohort-specific OLS estimation to

be a standard difference-in-differences without a staggered roll-out. To check the robustness of our

main approach, we also estimate this cohort-specific OLS regression and take the weighted average

of these estimates using the relative sample size as weight. We estimate that this approach produces

results consistent with our main results.
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Appendix B: Calculation of the Externalities from Air Pollution

To calculate the additional welfare gain from reduced environmental externalities, we need to under-

stand how household energy conservation affects local ambient pollution. First, we examine whether

pollution emissions of the heating plant correlate with household heating usage. We use emission

concentration data from the CEMS (Continuous Emission Monitoring System) monitor placed at

the heating plant. Figure A.5a shows that as the daily total heating usage of households in this

district increases, daily average SO2 concentration also increases. This positive association is also

observed for NOx and PM in Figure A.5b and Figure A.5c. As a major polluting source in winter,

the heating plant’s emissions likely affect the local ambient air quality.

Second, we estimate the correlation between household heating usage and ambient air pollution,

using air pollution data from a pollution monitor located in the residential area. In Table A.8, the

ambient pollution data and the total heating usage of all households are both at the daily level, and

we control for weather conditions, year-by-week fixed effects, and day of week fixed effects. We find

that 1 percent increase in heating consumption is associated with 0.88 percent increase in ambient

PM10 concentrations, where the baseline PM10 concentrations before the reform was 131. For each

of the decile groups, we combine these estimates with the ITT estimate on heating usage to calculate

the amount of reductions in PM10 concentrations following the reform. Ito and Zhang (2020) and

the average household income in Tianjin suggests that a Tianjin household’s marginal willingness

to pay for a reduction in PM10 is 1.43 dollars per ug/m3 of PM10 per year. We then multiply these

two estimates to measure the WTP for the policy-induced reduction in PM10. We find that the

marginal cost of the environmental externality is 0.0153 USD per kWh of heating usage.19

19Note that this estimate is likely to be a lower bound estimate for environmental externalities because this
calculation does not include other potential environmental externalities than PM10 and the MWTP for reductions in
PM10 in Ito and Zhang (2020) is a lower bound estimate for reasons described in that study.
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Appendix C: Additional Tables

Table A.1: Timing of the CBB policy

Dependent variable: Rollout year of usage-based pricing

Year of build 0.042
(0.095)

Average condo size (square meter) -0.005
(0.006)

Average home price per square meter (1,000 dollars) 0.032
(0.035)

Annual heating usage prior to CBB (1,000 kWh) 0.019
(0.051)

Number of Buildings 429
R2 0.98

Notes: In this table, we test if observed building characteristics are associated with the staggered rollout
timings of policy implementation. The observations are at the building level. The dependent variable is the
rollout year of consumption-based billing. The estimation includes the meter installation year fixed effects.

Table A.2: Robustness of the Impacts of the CBB by the Quartiles of the Predicted Changes in
Average Price (non-parametric controls of cohort trends are included)

Dependent variable: Log of daily heating usage
ITT

Quartile 1 Quartile 2 Quartile 3 Quartile 4

CBB 0.174 -0.030 -0.105 -0.140
(0.050) (0.048) (0.031) (0.033)

Observations 61,495 70,262 52,715 61,473

Notes: We divide customers by quartile based on their policy-induced changes in average price and estimate
equation (1) for each quartile group separately. The estimation includes household fixed effects and year-by-
month fixed effects. Non-parametric controls of cohort trends are included. Standard errors in parentheses
are clustered at the building level.
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Table A.3: Does Heating Usage Depend on Neighbors’ Compliance Status?

ln(daily heating usage)

CBB*complied -0.100
(0.020)

CBB*next door neighbor complied -0.001
(0.020)

CBB*upper or lower level neighbor complied 0.003
(0.018)

Observations 201,540
R2 0.59

Notes: In this table, we test if changes in heating usage are correlated with neighbors’ compliance status.
The regression includes household fixed effects and year-by-month fixed effects. The first coefficient implies
that changes in heating usage are negatively correlated with households own compliance status, which is
consistent with our main findings on the policy’s treatment effects. The rest of the coefficients indicate that
there is little statistical evidence that changes in heating usage are correlated with neighbors’ compliance
status.

Table A.4: ATET: Impacts of the CBB by the Quartiles of the Predicted Changes in Average Price

Dependent variable: Log of daily heating usage
ATET

Quartile 1 Quartile 2 Quartile 3 Quartile 4

CBB 0.306 0.037 -0.248 -0.217
(0.060) (0.082) (0.082) (0.025)

Observations 61,495 70,262 52,715 61,473
Change in Marginal Price 0.014 0.014 0.014 0.014
ATET on ln(Average Price) -0.316 0.053 0.292 0.383
ATET on ln(Predicted Average Price) -0.166 0.079 0.082 0.329

Notes: The regression includes household fixed effects and year-by-month fixed effects. This table reports
the DID estimates (ATET) of the overall reform effect by quartile group of predicted average price.
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Table A.5: ATET: Testing for Schmeduling

ATET H0: β ≤ 0

Marginal ln(Predicted ln(Actual ln(Usage) (p-value)
price average price) average price)

Full sample 0.014 -0.166 -0.316 0.306 0.00005
(0.007) (0.052) (0.060)

Households with 0.014 -0.168 -0.252 0.237 0.002
home value > median (0.010) (0.076) (0.084)

Households with 0.014 -0.162 -0.256 0.208 0.001
home value ≤ median (0.011) (0.072) (0.089)

Households with 0.014 -0.164 -0.217 0.229 0.005
home size > median (0.011) (0.061) (0.089)

Households with 0.014 -0.167 -0.332 0.284 0.0002
home size ≤ median (0.013) (0.072) (0.080)

Notes: This table reports the DID estimates (ATET) of the reform effect in quartile 1 of predicted average
price.

Table A.6: Middle vs. Top and bottom floors, and Corner vs. Non-corner unites

ln(daily heating usage)

Panel A: Middle vs. Top and bottom floors
(1) (2) (3)

Middle Top and bottom Difference
floors floors P-value

CBB -0.083 -0.062 0.28
(0.025) (0.026)

Observations 205,432 41,100

Panel B: Non-corner vs. Corner units
(1) (2) (3)

Non-corner Corner Difference
units units P-value

CBB -0.081 -0.043 0.12
(0.027) (0.019)

Observations 54,971 78,746

Notes: The regression includes household fixed effects and year-by-month fixed effects. In Panel B,
we use a subsample of buildings where we can identify corner vs. non-corner units: buildings with three,
four or eight households on the same floor.
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Table A.7: Results Based on the Conventional OLS with Two-way Fixed Effects

ln(daily heating usage)

(1) (2) (3) (4)
Quartile 1 Quartile 2 Quartile 3 Quartile 4

First year of CBB -0.056 -0.111 -0.055 -0.048
(0.036) (0.023) (0.022) (0.023)

Second year of CBB -0.074 -0.139 -0.114 -0.052
(0.055) (0.036) (0.040) (0.047)

Third year of CBB -0.146 -0.234 -0.229 -0.152
(0.072) (0.049) (0.051) (0.065)

Observations 61,495 70,262 52,715 61,473
R2 0.53 0.64 0.67 0.69

Notes: This table shows the ITT estimates using the conventional OLS with two-way fixed effects. The
estimation includes household fixed effects and year-by-month fixed effects. Standard errors in parentheses
are clustered at the building level.

Table A.8: Household Heating Usage and Ambient Pollution

(1) (2) (3)
lnSO2 lnPM2.5 lnPM10

ln(Daily total heating usage) 1.562 1.414 0.877
(0.434) (0.476) (0.414)

Observations 461 459 444
R2 0.74 0.65 0.58
Weather controls Y Y Y
Year-week FE Y Y Y
Day-of-week FE Y Y Y

Notes: In this table, we estimate the relationship between heating usage and ambient pollution. Ambient
pollution data on the concentration of SO2, PM2.5 and PM10 are from a pollution monitor located in the
district of Tianjin where this study is conducted. This pollution monitor is the only one located in the district
of our study, and this district is relatively isolated from other districts of Tianjin, with a road distance of
about 55 kilometers from Tianjin’s city center. Weather controls include temperature, precipitation and
wind speed.
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Appendix D: Additional Figures

Figure A.1: Rollout of the reform
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Notes: This figure shows the rollout of the consumption-based billing policy.
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Figure A.2: Robustness of Policy-Induced Changes in Average Price and Usage (non-parametric
controls of cohort trends are included)
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Notes: We divide customers by decile based on their policy-induced changes in average price. For each
decile, we estimate the ITT of the CBB on the log of heating usage based on the difference-in-differences
estimation method developed by de Chaisemartin and D’Haultfœuille (2020). We also apply the same method
to estimate the ITT on the log of the policy-induced change in average price. Non-parametric controls of
cohort trends are included. The bars indicate the 95 percent confidence intervals. Standard errors are
clustered at the building level.
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Figure A.3: Robustness of the Event-Study by Quartile (non-parametric controls of cohort trends
are included)
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b) Quartile 2
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c) Quartile 3
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d) Quartile 4
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Notes: This figure shows the ITT estimates of the staggered difference-in-differences analysis described in
equation (1) based on the estimation method developed by de Chaisemartin and D’Haultfœuille (2020).
There are three heating months in each year because the heating season is December, January, and February.
The bars indicate the 95 percent confidence intervals. Standard errors are clustered at the building level.
We divide customers by quartile based on their policy-induced changes in average price. We then estimate
equation (1) for each quartile group separately to make these event study figures. In this analysis, we
interact time fixed effects with cohorts.
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Figure A.4: Cohort-by-Time Weights Imposed by the OLS with Two-Way Fixed Effects
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Notes: We compute the cohort-by-time weights that are imposed by the conventional OLS using the method
developed by de Chaisemartin and D’Haultfœuille (2020). We then plot them against the “correct" cohort-
by-time weights, which are the relative sample size across the cohort-by-time cells. If the OLS uses weights
that are equivalent to the correct weights (i.e., the OLS weights and correct weights line up at the 45-degree
line in the figure), we can obtain the correct average treatment effect using the OLS. However, the figure
shows that many weights are not on the 45-degree line. Furthermore, 46% of the weights imposed by the
OLS are negative.
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Figure A.5: Household Heating Usage and Pollution Emissions of the Heating Plant

(a) SO2 concentration (mg/m3)
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(b) NOx concentration (mg/m3)
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(c) PM concentration (mg/m3)
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Notes: Data on emission concentrations are from the CEMS monitor placed at the heating plant.

49


	Introduction
	Key Features of the Heating Price Reform
	Metered Data
	Staggered Rollouts
	Price Variation Created by the Reform

	Data 
	Household Heating Usage Data
	Air pollution data

	Impacts of the Consumption-Based Billing on Heating Usage
	Overall Policy Impacts
	Validity of the Identification Assumptions
	Interpretation of the Overall Impacts of the CBB

	Do Consumers Distinguish Fixed Cost from Variable Cost? 
	Conceptual Framework
	Empirical Tests for Schmeduling
	Mean Reversion and Validity of Identification Assumptions

	Alternative Explanations
	Category Budgeting
	Income Effect
	Spurious Correlations

	Welfare Implications
	Conclusion

