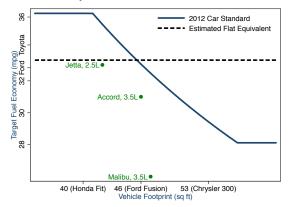
# The Economics of Attribute-Based Regulation: Theory and Evidence from Fuel-Economy Standards

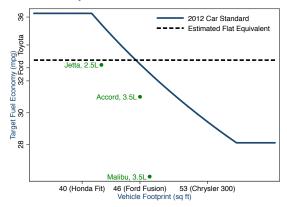
### Koichiro Ito<sup>1</sup> James M. Sallee<sup>2</sup>

<sup>1</sup>Boston University and NBER (ito@bu.edu)

<sup>2</sup>University of Chicago and NBER (sallee@uchicago.edu)


March 13, 2015 at ZEW

What is an "attribute-based regulation"?


#### What is an "attribute-based regulation"?

• An ABR is a regulation that targets some characteristic of a product or firm, but which takes some secondary attribute into consideration when determining compliance

Fuel Economy Standards in the U.S. since 2012



Fuel Economy Standards in the U.S. since 2012



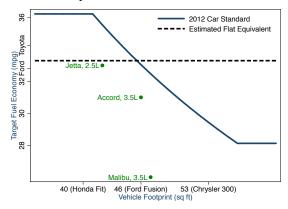
• **Potential cost:** secondary attribute may be distorted in response to the regulation; cars may get larger

## Anecdotal evidence of the "up-sizing" incentive

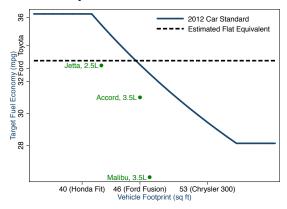
 The New Range Rover advertises its "Long Wheelbase" (footprint = wheelbase × trackwidth)



Introducing the new Long Wheelbase; with additional rear legroom of 7.3 inches, it delivers greater interior refinement and space enabling passengers to travel in relaxed, uncompromising style.

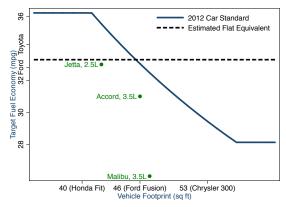

Long Wheelbase

SELECT MODEL


From \$106,225\*

Hat tip: Catie Hausman

Fuel Economy Standards in the U.S. since 2012




Fuel Economy Standards in the U.S. since 2012



• Efficiency benefit? equalize marginal cost of compliance

Fuel Economy Standards in the U.S. since 2012



- Efficiency benefit? equalize marginal cost of compliance
- Other possible benefits: incidence, "fairness", safety, technology, targeting/tagging, imperfect competition

# Attribute-based regulation is ubiquitous

- Attribute-based regulation (ABR):
  - Consider regulation on e
  - Stringency of regulation  $(\boldsymbol{s})$  depends on attribute  $(\boldsymbol{a})$

# Attribute-based regulation is ubiquitous

- Attribute-based regulation (ABR):
  - Consider regulation on **e**
  - Stringency of regulation (s) depends on attribute (a)
- Examples:
- Fuel economy standards s depend on vehicle attribute a, including footprint (US), weight (Europe, Japan, China)
- Appliance standards **s** depend on product size **a**

# Attribute-based regulation is ubiquitous

- Attribute-based regulation (ABR):
  - Consider regulation on **e**
  - Stringency of regulation (s) depends on attribute (a)
- Examples:
- Fuel economy standards s depend on vehicle attribute a, including footprint (US), weight (Europe, Japan, China)
- Appliance standards s depend on product size a
- Firm liability s for worker safety depends on firm size a
- Affordable Care Act s depend on firm size a
- Power plant emissions rules s depend on plant vintage a
- Income tax schedule s depends on marital status a

#### **Research question:**

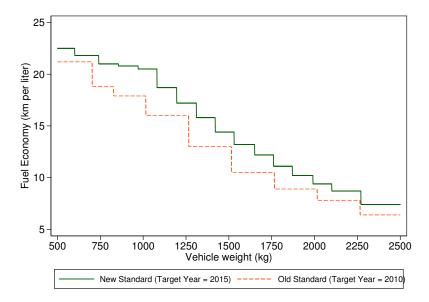
• What are welfare implications of attribute-based regulation?

#### **Research question:**

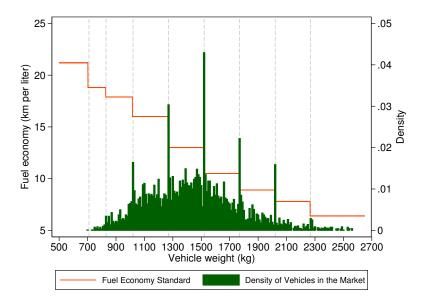
• What are welfare implications of attribute-based regulation?

#### Main results:

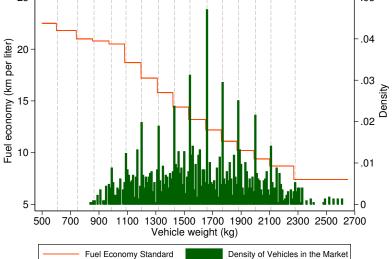
- **1** ABR is unjustified under baseline assumptions
  - Emphasize simple model to get intuition
  - Under alternative assumptions  $\Rightarrow$  ABR can be useful, but still do not rationalize observed policy

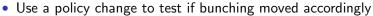

#### **Research question:**

• What are welfare implications of attribute-based regulation?


#### Main results:

- **1** ABR is unjustified under baseline assumptions
  - Emphasize simple model to get intuition
  - Under alternative assumptions  $\Rightarrow$  ABR can be useful, but still do not rationalize observed policy
- ABR creates distortions in attribute (a)
  - Empirical evidence from the Japanese auto market


• "Notched" Fuel Economy Standard Schedule in Japan




• Use "bunching" to estimate firm's responses to policy









### Research question:

• What are welfare implications of attribute-based regulation?

### Main results:

- 1 ABR is unjustified under baseline assumptions
  - Emphasize simple model to get intuition
  - Under alternative assumptions  $\Rightarrow$  ABR can be useful, but still do not rationalize observed policy
- 2 ABR creates distortions in attribute (a)
  - Empirical evidence from the Japanese auto market

**3** Can ABR be useful when compliance trading is unavailable?

- Show potential benefits and limitations of ABR

# Road Map

### **Research question:**

• What are welfare implications of attribute-based regulation?

#### Main results:

- 1 ABR is unjustified under baseline assumptions
  - Emphasize simple model to get intuition
  - Under alternative assumptions  $\Rightarrow$  ABR can be useful, but still do not rationalize observed policy
- **2** ABR creates distortions in attribute (a)
  - Empirical evidence from the Japanese auto market
- 3 Can ABR be useful when compliance trading is unavailable?
  - Show potential benefits and limitations of ABR

Sketch of the theory to get intuition (details in paper)

- Suppose fuel economy  ${\bf e}$  creates (positive) externality  $\phi$
- Non-attribute-based Pigouvian subsidy for fuel economy e is:

Subsidy  $= S(e) = s \cdot e$ 

Sketch of the theory to get intuition (details in paper)

- Suppose fuel economy  ${\bf e}$  creates (positive) externality  $\phi$
- Non-attribute-based Pigouvian subsidy for fuel economy e is:

Subsidy 
$$= S(e) = s \cdot e$$

• Attribute-based subsidy for fuel economy e and weight a is:

$$S(a, e) = s \cdot (e - \sigma(a))$$
, where  $\sigma'(a) < 0$ 

Sketch of the theory to get intuition (details in paper)

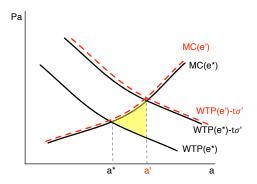
- Suppose fuel economy **e** creates (positive) externality  $\phi$
- Non-attribute-based Pigouvian subsidy for fuel economy e is:

Subsidy 
$$= S(e) = s \cdot e$$

• Attribute-based subsidy for fuel economy e and weight a is:

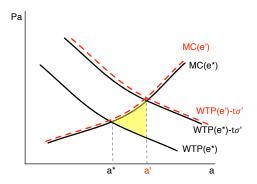
$$S(a, e) = s \cdot (e - \sigma(a))$$
, where  $\sigma'(a) < 0$ 

• Essentially, ABR creates an implicit extra subsidy for weight a


### ABR creates two incentives

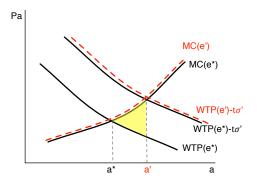
• ABR creates two subsidy incentives for a and e:

$$\frac{\partial S(a, e)}{\partial e} = s$$
$$\frac{\partial S(a, e)}{\partial a} = -\sigma'(a) \cdot s$$


- 1st incentive is sufficient to correct externality (by s = Pigou)
- 2nd incentive creates unnecessary distortions in a

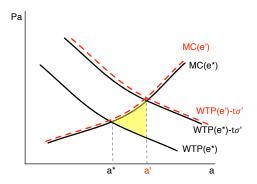
Proposition 1: Optimal policy  $\rightarrow$  No ABR:  $\sigma'(a) = 0$ 




- Optimal policy is Pigouvian subsidy with <u>no ABR</u> ( $\sigma' = 0$ )
- ABR creates welfare loss: Harberger triangle (yellow)

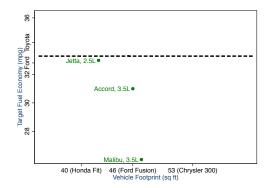
Proposition 1: Optimal policy  $\rightarrow$  No ABR:  $\sigma'(a) = 0$ 




- Optimal policy is Pigouvian subsidy with <u>no ABR</u> ( $\sigma' = 0$ )
- ABR creates welfare loss: Harberger triangle (yellow)
- Attribute is more elastic to policy  $\rightarrow$  DWL becomes larger

Proposition 1: Optimal policy  $\rightarrow$  No ABR:  $\sigma'(a) = 0$ 




- Optimal policy is Pigouvian subsidy with <u>no ABR</u> ( $\sigma' = 0$ )
- ABR creates welfare loss: Harberger triangle (yellow)
- Attribute is more elastic to policy  $\rightarrow$  DWL becomes larger
- Does ABR help equalizing marginal costs of compliance?

Proposition 1: Optimal policy  $\rightarrow$  No ABR:  $\sigma'(a) = 0$ 



- Optimal policy is Pigouvian subsidy with <u>no ABR</u> ( $\sigma' = 0$ )
- ABR creates welfare loss: Harberger triangle (yellow)
- Attribute is more elastic to policy  $\rightarrow$  DWL becomes larger
- Does ABR help equalizing marginal costs of compliance?
- "No" in this case. Tax/subsidy equalizes MC of abatement

Corollary 1: Regulation with "compliance trading"  $\rightarrow$  Equivalent result to the tax/subsidy case



- Firms can trade their "compliance"
- Compliance trading equalizes MC of compliance
- A shadow price of compliance = Pigouvian subsidy

## Proposition 3: ABR attenuates corrective subsidy

- What is the optimal subsidy level when we have to do ABR?
- For illustration, consider linear AB subsidy:  $s \cdot (e \hat{\sigma}a)$ , where  $\hat{\sigma}$  is a constant
- **Proposition 3:** Suppose  $\hat{\sigma}$  fixed. Then SB *s* is:

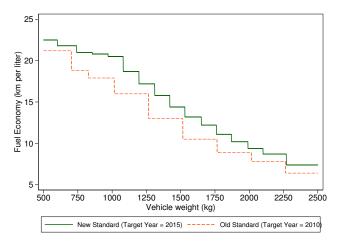
$$s^{SB} = \frac{\phi}{1 - \hat{\sigma} \left( \frac{(\sum_{n} \frac{\partial a}{\partial s})/n}{(\sum_{n} \frac{\partial e}{\partial s})/n} \right)} \le \phi$$

- ABR attenuates corrective subsidy
- Response to policy tilted towards  $\mathbf{a} \rightarrow \mathsf{attenuation}$  greater

## Under alternative assumptions, can ABR be useful?

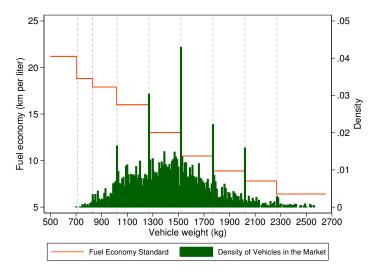
- How about if compliance trading is unavailable?
  - I'll talk about this in the final part of this talk
- Incidence
   More
  - Regulators may use ABR to redistribute compliance burdens
  - Our new theory section incorporates this possibility
  - Note: efficiency loss from distortions still exists
- Targeting/tagging ▶ More
  - Suppose that "actual externality" cannot be regulated
  - In theory, an optimal ABR can be designed
  - However, observed ABR policies are not created in this way

# Road Map


#### **Research question:**

• What are welfare implications of attribute-based regulation?

#### Main results:


- 1 ABR is unjustified under baseline assumptions
  - Emphasize simple model to get intuition
  - Under alternative assumptions  $\Rightarrow$  ABR can be useful, but still do not rationalize observed policy
- 2 ABR creates distortions in attribute (a)
  - Does ABR cause distortions in practice?
  - Empirical evidence from the Japanese auto market
- 3 Can ABR be useful when compliance trading is unavailable?
  - Show potential benefits and limitations of ABR

## Japan's fuel economy regulations provide three advantages




- 1 Notched schedule in vehicle weight
- 2 A policy change of the notched schedule
- 3 Long analysis window (policy started in 1970's)

## A histogram of raw data reveals substantial bunching




- Data: 2001-2008
- · Bunching of vehicles at notches in vehicle weight

# After a policy change, bunching moved accordingly



- Data: 2009-2013 (new fuel economy standard)
- Bunching at "new" notches in vehicle weight

### We econometrically estimate excess bunching



• Estimate a counterfactual density to estimate excess bunching (Chetty et al. 2011 and Kleven and Waseem 2013)

## How to estimate the counterfactual density?

$$c_j = \sum_{s=0}^{S} \beta_s^0 \cdot (w_j)^s + \sum_{k=1}^{K} \gamma_k^0 \cdot d_k + \varepsilon_j,$$

- $c_j$  = the number of vehicles in a 10 kg bin
- $w_j$  = weight (kg) for bin j
- First summation is a polynomial; we use S = 7
- Second summation is a dummy variable for each notch point k
- Fit the polynomial to the distribution, excluding notch points
- Counterfactual distribution:  $\hat{c}_j^0 = \sum_{s=0}^q \hat{\beta}_s^0 \cdot (w_j)^s$
- Excess bunching of cars at notch k is  $\hat{B}^0_k = c_k \hat{c}^0_k = \hat{d}^0_k$

## How to estimate the counterfactual density?

$$c_j = \sum_{s=0}^{S} \beta_s^0 \cdot (w_j)^s + \sum_{k=1}^{K} \gamma_k^0 \cdot d_k + \varepsilon_j,$$

- $c_j$  = the number of vehicles in a 10 kg bin
- $w_j$  = weight (kg) for bin j
- First summation is a polynomial; we use S = 7
- Second summation is a dummy variable for each notch point k
- Fit the polynomial to the distribution, excluding notch points
- Counterfactual distribution:  $\hat{c}_j^0 = \sum_{s=0}^q \hat{\beta}_s^0 \cdot (w_j)^s$

• Excess bunching of cars at notch k is  $\hat{B}^0_k = c_k - \hat{c}^0_k = \hat{d}^0_k$ 

- This initial estimate overestimates excess bunching
- Because it does not satisfy "integration constraint"

How to satisfy the integration constraint?

$$c_j + \sum_{k=1}^{K} \alpha_{kj} \cdot \hat{B}_k = \sum_{s=0}^{S} \beta_s \cdot (w_j)^s + \sum_{k=1}^{K} \gamma_k \cdot d_k + \varepsilon_j,$$

- Our method is an extension of Chetty et al. (2011 QJE)
- Estimate this equation by iteration until we reach a fixed point
- We make an important (conservative) assumption:
- Bunching comes only from the immediate left weight bins
- Potentially, firms respond more to reach a further right notch
- Our method provides lower bounds of firms' responses

How to satisfy the integration constraint?

$$c_j + \sum_{k=1}^{K} \alpha_{kj} \cdot \hat{B}_k = \sum_{s=0}^{S} \beta_s \cdot (w_j)^s + \sum_{k=1}^{K} \gamma_k \cdot d_k + \varepsilon_j,$$

- Our method is an extension of Chetty et al. (2011 QJE)
- Estimate this equation by iteration until we reach a fixed point
- We make an important (conservative) assumption:
- Bunching comes only from the immediate left weight bins
- Potentially, firms respond more to reach a further right notch
- Our method provides lower bounds of firms' responses
- Two methods to specify α<sub>kj</sub>
  - Uniform assumption
  - Estimate  $\alpha_{kj}$  from the observed & counterfactual distribution

## How should we interpret counterfactual distribution?

- Counterfactual: policy with same shadow price  $\lambda$ , but no attribute-basing ( $\sigma' = 0$ )
- For illustration, consider a notched tax policy with only one notch:

$$t(a,e) = egin{cases} t \cdot e & ext{if } a < ar{a} \ t \cdot e + au & ext{if } a \geq ar{a}. \end{cases}$$

- For all non-bunchers  $(a \neq \bar{a})$ :
  - Incentive for  $t : \partial t(a, e) / \partial e = t$
  - Incentive for  $a: \partial t(a, e)/\partial a = 0$
  - $\tau$  is lump-sum  $\Rightarrow$  choice of a and e independent of  $\tau$
- Therefore, non-bunchers choose as though  $t(a, e) = t \cdot e$

#### **Bunching Estimation Results**

- First, we report results for 2001-2008 (old fuel econ. standard)
- Bootstrapped S.E. (Chetty et al. (2011 QJE) and Kleven and Waseem (2013 QJE))

|                      | Fuel Economy         | Main Estimates |          |                    |  |
|----------------------|----------------------|----------------|----------|--------------------|--|
| Notch                | Standard             | Excess         | Excess   | $E[\Delta weight]$ |  |
| Point                | below & above        | Bunching       | Bunching | (kg)               |  |
|                      | the Notch (km/liter) | (#  of cars)   | (ratio)  |                    |  |
| (1)                  | (2)                  | (3)            | (4)      | (5)                |  |
| 830  kg              | 18.8                 | 16.46          | 2.13     | 51.57              |  |
|                      | 17.9                 | (7.91)         | (0.49)   | (3.21)             |  |
|                      |                      |                |          |                    |  |
| 1020  kg             | 17.9                 | 87.18          | 2.41     | 103.77             |  |
|                      | 16                   | (8.05)         | (0.16)   | (0.49)             |  |
|                      |                      |                |          |                    |  |
| 1270  kg             | 16                   | 163.48         | 2.47     | 146.89             |  |
|                      | 13                   | (7.92)         | (0.11)   | (0.62)             |  |
|                      |                      |                |          |                    |  |
| 1520  kg             | 13                   | 285.27         | 3.75     | 114.97             |  |
|                      | 10.5                 | (8.21)         | (0.21)   | (0.22)             |  |
|                      |                      |                |          |                    |  |
| $1770 \ \mathrm{kg}$ | 10.5                 | 143.93         | 3.52     | 129.44             |  |
|                      | 8.9                  | (8.93)         | (0.30)   | (0.57)             |  |
|                      |                      |                |          |                    |  |
| 2020  kg             | 8.9                  | 127.07         | 8.51     | 120.77             |  |
|                      | 7.8                  | (9.04)         | (1.55)   | (0.15)             |  |
|                      |                      |                |          |                    |  |
| 2270  kg             | 7.8                  | 15.67          | 2.52     | 137.86             |  |
|                      | 6.4                  | (6.40)         | (0.66)   | (4.48)             |  |

28/1

|          | Fuel Economy         | Main Estimates |          |                    |
|----------|----------------------|----------------|----------|--------------------|
| Notch    | Standard             | Excess         | Excess   | $E[\Delta weight]$ |
| Point    | below & above        | Bunching       | Bunching | (kg)               |
|          | the Notch (km/liter) | (#  of cars)   | (ratio)  |                    |
| (1)      | (2)                  | (3)            | (4)      | (5)                |
| 830 kg   | 18.8                 | 16.46          | 2.13     | 51.57              |
|          | 17.9                 | (7.91)         | (0.49)   | (3.21)             |
|          |                      |                |          |                    |
| 1020  kg | 17.9                 | 87.18          | 2.41     | 103.77             |
|          | 16                   | (8.05)         | (0.16)   | (0.49)             |
|          |                      |                |          |                    |
| 1270  kg | 16                   | 163.48         | 2.47     | 146.89             |
|          | 13                   | (7.92)         | (0.11)   | (0.62)             |
|          |                      |                |          |                    |
| 1520  kg | 13                   | 285.27         | 3.75     | 114.97             |
|          | 10.5                 | (8.21)         | (0.21)   | (0.22)             |
|          |                      |                |          |                    |
| 1770  kg | 10.5                 | 143.93         | 3.52     | 129.44             |
|          | 8.9                  | (8.93)         | (0.30)   | (0.57)             |
|          |                      |                |          |                    |
| 2020  kg | 8.9                  | 127.07         | 8.51     | 120.77             |
|          | 7.8                  | (9.04)         | (1.55)   | (0.15)             |
|          |                      |                |          |                    |
| 2270  kg | 7.8                  | 15.67          | 2.52     | 137.86             |
|          | 6.4                  | (6.40)         | (0.66)   | (4.48)             |

29/1

# Summary of bunching estimation results

- Substantial excess bunching at each notch point
  - b = 2.1 to 8.5 in the old fuel economy standard (2001-2008)
  - b = 1.6 to 4.1 in the new fuel economy standard (2008-2013)
- Weight manipulation is economically significant
  - $\,\approx\,10\%$  of vehicles have manipulated weight
  - Average weight increase of those vehicles is  $\approx$  110 kg
  - Implies empirical evidence of distortion in a (attribute)
- What is the welfare loss from the weight increase?
  - Heavier vehicles increase fatality for other cars
  - DWL  $\approx$  \$1 billion per year for the Japanese auto market

## Welfare loss from safety externality

- Externality of heavier vehicles
  - Increase probability of fatality of other cars
  - Anderson and Auffhammer (2012) and Jacobsen (2013)
- Deadweight loss (DWL)
  - DWL  $\approx \Delta kg * \partial Fatalities / \partial kg * VSL$
  - Anderson and Auffhammer (2012): 1000 lb increase raises probability of fatality by 0.09%
  - DWL  $\approx 110 * 2.2/1000 * .0009 * 9,300,000 = \$2026 \ per manipulated car$
  - DWL  $\approx$  \$1.0 billion in the Japanese market per year

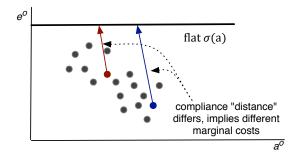
# Road Map

### **Research question:**

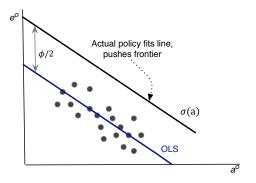
• What are welfare implications of attribute-based regulation?

### Main results:

**1** ABR is unjustified under baseline assumptions

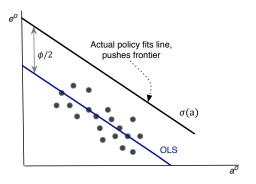

- Emphasize simple model to get intuition
- Under alternative assumptions  $\Rightarrow$  ABR useful, but alternatives do not rationalize observed policy
- 2 ABR creates unnecessary distortion in attribute (a)
  - Does ABR cause distortions in practice?
  - Empirical evidence from the Japanese auto market

### **3** Can ABR be useful when compliance trading is unavailable?


- Show potential benefits and limitations of ABR
- Develop new "double notch" method

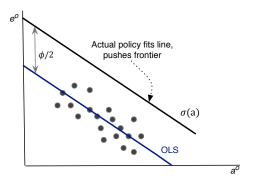
# What if compliance trading is not available?

 With no compliance trading, a flat standard creates different marginal costs of abatement across products ⇒ inefficiency




Potentially, ABR may help equalizing marginal costs?




#### Proposition 4 from theory section

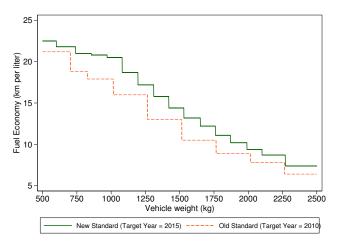
• Benefit: ABR can partially equalize the MC of abatement



### Proposition 4 from theory section

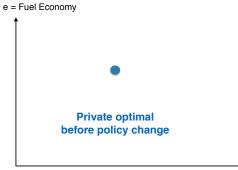
- Benefit: ABR can partially equalize the MC of abatement
- Cost: ABR distorts attributes




### Proposition 4 from theory section

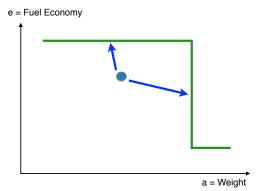
- Benefit: ABR can partially equalize the MC of abatement
- Cost: ABR distorts attributes

### Empirically investigate this welfare implication


 Leverage panel data on vehicle redesigns in a "double notched" policy

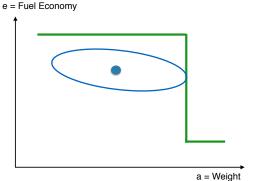
## Policy change: a new subsidy for each specific vehicle




- New policy
  - Changes in the notched schedule
  - Subsidy (about \$1,500) per car sale if car meets the standard

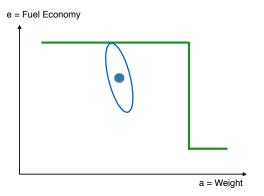
## Consider a vehicle before the policy change




a = Weight

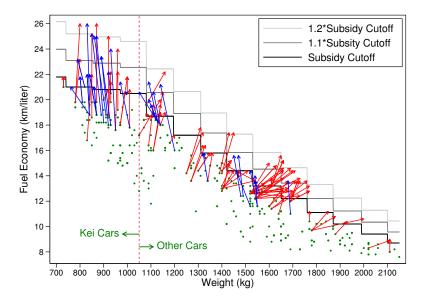
# This policy change creates a <u>double notch</u> problem




- Subsidy if  $(a, e) \in$  upper-right areas
- But, deviation from the initial optimum creates loss in surplus
- What is the optimal choice of Δa and Δe?

## Consider a level set of a loss function




• This example shows the case where  $\Delta a$  creates smaller loss

## This example shows the case where $\Delta e$ creates smaller loss



- This loss function determines responsivness of a and e wrt t
- This is key for welfare and policy analysis
- Goal is to recover this loss function from revealed preference

### Raw panel data reveal each car's "path" to the subsidy



Estimate adjustment cost function from revealed choices

- For each vehicle *j*, the data tell us their Choice(*a<sub>j</sub>*, *e<sub>j</sub>*)
- Discrete choice model for  $\Delta a_j$  and  $\Delta e_j$

 $\textit{Choice}_{j} = \alpha \Delta a_{j}^{2} + \beta \Delta e_{j}^{2} + \gamma \Delta a_{j} \Delta e_{j} + \tau \textit{Subsidy}_{j} + \varepsilon_{j}$ 

Estimate adjustment cost function from revealed choices

- For each vehicle *j*, the data tell us their Choice(*a<sub>j</sub>*, *e<sub>j</sub>*)
- Discrete choice model for  $\Delta a_j$  and  $\Delta e_j$

$$Choice_{j} = \alpha \Delta a_{j}^{2} + \beta \Delta e_{j}^{2} + \gamma \Delta a_{j} \Delta e_{j} + \tau Subsidy_{j} + \varepsilon_{j}$$

• Estimate by Logit. More results are in Table 4.

 $\textit{Choice} = -1.24 \cdot \Delta_a^2 - 1.15 \cdot \Delta_e^2 + 0.13 \cdot \Delta_a \Delta_e + 0.77 \cdot \textit{Subsidy}$ 

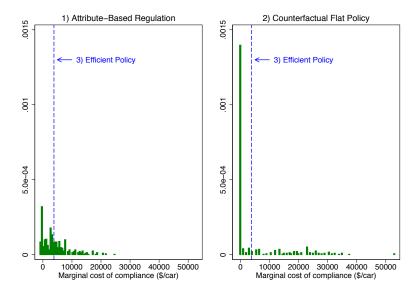
- This function tells us the relative cost of changing a and e
- We use this adjustment cost function for policy simulation

Compare three policies by policy simulation

Three policy alternatives to correct externality e

- 1 ABR
- 2 Flat standard with NO compliance trading
- **3** Efficient (= flat standard with compliance trading)

What is each policy's welfare cost in order to achieve the same welfare benefit by improving **e**?


# Compare three policies by policy simulation

|                                                                                | $\Delta e$ :     | $\Delta a$ : | Cost from  | Cost from  | Welfare  | Cost     |  |  |
|--------------------------------------------------------------------------------|------------------|--------------|------------|------------|----------|----------|--|--|
|                                                                                | Fuel consumption | Weight       | $\Delta e$ | $\Delta a$ | $\cos t$ | relative |  |  |
|                                                                                | (liter/100 km)   | (kg)         | (/car)     | (/car)     | (s/car)  | to ABR   |  |  |
| Panel A) Based on the Loss Function without Controls for Compliance Regulation |                  |              |            |            |          |          |  |  |
| ABR                                                                            | -0.76            | 33.28        | -1319      | -524       | -1843    | 1.00     |  |  |
| Flat                                                                           | -0.76            | 0.00         | -3590      | 0          | -3590    | 1.95     |  |  |
| Efficient                                                                      | -0.76            | 0.00         | -731       | 0          | -731     | 0.40     |  |  |

### Three policy implications:

- 1 Efficiency  $\rightarrow$  1) Efficient policy > 2) ABR > 3) Flat
- **2** Cost of ABR: Attribute distortions ( $\Delta a$ )
- **8** Benefit: Equalize marginal compliance costs (only partially)

# Histogram of marginal costs of compliance



## Planned empirical extension

- Our DCM estimates "reduced-form" adjustment cost
- Under perfect competition, adjustment cost = social cost

## Planned empirical extension

- Our DCM estimates "reduced-form" adjustment cost
- Under perfect competition, adjustment cost = social cost
- Under imperfect competition, adjustment cost = lost profit
- Lost profit  $\neq$  social cost
  - Lost profit commingles production costs and markups
  - Consumer surplus could change without change in profit

# Planned empirical extension

- Our DCM estimates "reduced-form" adjustment cost
- Under perfect competition, adjustment cost = social cost
- Under imperfect competition, adjustment cost = lost profit
- Lost profit  $\neq$  social cost
  - Lost profit commingles production costs and markups
  - Consumer surplus could change without change in profit
- Use method of Berry, Levinsohn and Pakes (1995) to estimate welfare for observed products
- To model counterfactual policy, need to allow price, weight and fuel economy to respond; BLP endogenizes only price
- We could:
  - 1 Use BLP, but endogenize all three with instruments
  - 2 Use our DCM approach to establish counterfactual products

# Planned empirical extension: algorithm

- 1 Estimate BLP on actual data (with actual policy)
  - Yields consumer and producer surplus
- 2 Estimate DCM in 3-dimensions: price, weight, fuel economy
- **3** Marginally change policy (e.g., flatten  $\hat{\sigma}$ )
- **4** Use DCM to predict counterfactual set of products
  - DCM predicts new price, weight, fuel economy
  - Assume other attributes are unchanged
  - Focus on marginal change justifies no entry/exit assumption
- G Calculate new consumer and producer surplus, using BLP coefficients
  - If DCM delivers counterfactual price, need only demand system
  - FOC conditions allow us to infer product cost and thus profits

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere
- Results from theory
  - **1** ABR is unjustified (for tax or compliance trading)

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere
- Results from theory
  - **1** ABR is unjustified (for tax or compliance trading)
  - 2 Distortion from ABR rises with the elasticity of a

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere
- Results from theory
  - **1** ABR is unjustified (for tax or compliance trading)
  - 2 Distortion from ABR rises with the elasticity of a
  - **3** No compliance trading  $\rightarrow$  ABR may provide a benefit
- Results from bunching analysis
  - **1** Bunching estimation: large distortion (10% weight increase)

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

### • Results from bunching analysis

- **1** Bunching estimation: large distortion (10% weight increase)
- 2 DWL from safety externality pprox \$ 1 billion per year

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

#### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

#### • Results from bunching analysis

- **1** Bunching estimation: large distortion (10% weight increase)
- 2 DWL from safety externality  $\approx$  \$ 1 billion per year

#### • Results from policy simulation

• The most efficient policy is No ABR with compliance trading

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

#### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

#### • Results from bunching analysis

- **1** Bunching estimation: large distortion (10% weight increase)
- 2 DWL from safety externality  $\approx$  \$ 1 billion per year

#### • Results from policy simulation

- The most efficient policy is No ABR with compliance trading
- ABR is an imperfect substitute for the efficient policy

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

#### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

#### • Results from bunching analysis

- **1** Bunching estimation: large distortion (10% weight increase)
- 2 DWL from safety externality  $\approx$  \$ 1 billion per year

#### • Results from policy simulation

- The most efficient policy is No ABR with compliance trading
- ABR is an imperfect substitute for the efficient policy
- Cost: ABR creates attribute distortions

- Attribute-based regulation is widespread
  - Tools/insights developed here can be used elsewhere

#### • Results from theory

- **1** ABR is unjustified (for tax or compliance trading)
- 2 Distortion from ABR rises with the elasticity of a
- **3** No compliance trading  $\rightarrow$  ABR may provide a benefit

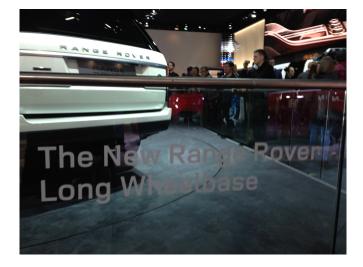
#### • Results from bunching analysis

- **1** Bunching estimation: large distortion (10% weight increase)
- 2 DWL from safety externality  $\approx$  \$ 1 billion per year

#### • Results from policy simulation

- The most efficient policy is No ABR with compliance trading
- ABR is an imperfect substitute for the efficient policy
- Cost: ABR creates attribute distortions
- Benefit: ABR (only partially) equalizes MC of compliance

#### Thank you!


#### Koichiro Ito (ito@bu.edu) James M. Sallee (sallee@uchicago.edu)

#### **Backup Slides**

### Data from the Japanese Ministry of Transportation

| Year | Ν    | Fuel Economy          | Vehicle weight       | Displacement   | CO2                |
|------|------|-----------------------|----------------------|----------------|--------------------|
|      |      | $(\mathrm{km/liter})$ | (kg)                 | (liter)        | (g-CO2/km)         |
| 2001 | 1441 | 13.53 (4.58)          | 1241.15 (356.63)     | 1.84(0.98)     | 195.40 (66.72)     |
| 2002 | 1375 | 13.35(4.33)           | 1263.52  (347.00)    | $1.86\ (0.97)$ | $196.72 \ (66.26)$ |
| 2003 | 1178 | 13.78(4.53)           | 1257.15 (356.28)     | 1.85(1.03)     | 191.88 (68.08)     |
| 2004 | 1558 | 14.20(4.78)           | 1255.37 (364.69)     | 1.82(1.03)     | 184.33 (66.67)     |
| 2005 | 1224 | 13.30(4.66)           | 1324.81 (380.62)     | 2.00(1.13)     | 198.14 (71.62)     |
| 2006 | 1286 | 13.08(4.59)           | 1356.56 (391.13)     | 2.08(1.17)     | 201.78 (72.67)     |
| 2007 | 1298 | 13.24 (4.78)          | 1369.41 (399.45)     | 2.09(1.22)     | 200.35 (75.07)     |
| 2008 | 1169 | 13.38(4.82)           | 1390.09 (405.77)     | 2.14(1.29)     | 198.58  (76.27)    |
| 2009 | 1264 | 13.49(4.93)           | $1396.40 \ (413.76)$ | 2.15(1.30)     | 197.73 (76.67)     |
| 2010 | 1300 | 13.50(5.04)           | 1428.27 (438.06)     | 2.21 (1.30)    | 198.32  (77.34)    |
| 2011 | 1391 | 13.95(5.06)           | 1437.21  (426.23)    | 2.19(1.28)     | 190.15 (71.60)     |
| 2012 | 1541 | 14.50(5.21)           | 1446.50 (411.87)     | 2.16(1.24)     | 182.05 (67.26)     |
| 2013 | 1706 | 14.43 (5.40)          | 1476.79 (400.31)     | 2.24 (1.24)    | 183.67 (67.37)     |

• Fuel economy, model, manufacturer, engine description, transmission, drivetype, weight, and other characteristics



- Anecdotal evidence from the Detroit Auto Show 2014
- "The New Range Rover Long Wheelbase"
  - Photo: Catie Hausman, University of Michigan



What if e does not directly generate externality?

- Suppose externality is g(a, e); e.g.,  $g = \frac{-m(a)}{e}$
- Planner's maximand is U(a,e) C(a,e) + g(a,e)
- Consumer's maximand is U(a, e) P(a, e) + t(a, e)
- Set t(a, e) = g(a, e)
- In example,  $\frac{\partial g}{\partial a} = \frac{-m'}{e} < 0$  (empirically)

What if e does not directly generate externality?

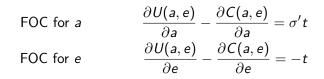
- Suppose externality is g(a, e); e.g.,  $g = \frac{-m(a)}{e}$
- Planner's maximand is U(a,e) C(a,e) + g(a,e)
- Consumer's maximand is U(a, e) P(a, e) + t(a, e)
- Set t(a, e) = g(a, e)
- In example,  $\frac{\partial g}{\partial a} = \frac{-m'}{e} < 0$  (empirically)
- Intuition: size/weight positively correlated with mileage, so optimal attribute-basing will penalize size/weight
- Limitation: with heterogeneity in g(a, e), will need second best calculations

#### Back

### What if there is imperfect competition? Markups

- Imperfect competition implies pricing above marginal cost
- Not obvious that imperfect competition will lead to misallocation of a and e—may only distort P(a, e)
- If P(a, e) C(a, e) correlated with *a*, then might justify attribute-basing
- Empirically, think P(a, e) C(a, e) positively correlated with a, implies subsidy to a optimal
- Could justify attribute-basing, but definitely not what regulators were intending

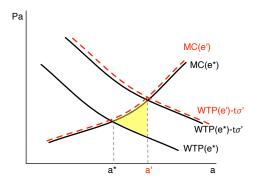
🕨 Back


## What if there is imperfect competition? Exit and Entry

- With fixed costs, limited set of vehicles on market, need not be efficient portfolio
- Attribute-basing will alter vehicle set
- Certainly possible that new set of vehicles more efficient
- Competition concerns definitely not what regulators were intending



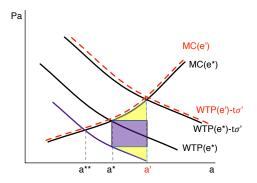
Result 1) First-best solution - No attribute-basing


• Consumer's FOC for the optimal tax:



- Matches planner's FOC iff  $\sigma' = 0$  (no attribute-basing) &  $t = \phi$  (Pigou)
- Attribute-basing  $(\sigma' 
  eq 0)$  creates distortion
- Important, but not surprising (Pigou, Kopczuk 2003, etc.)
- Regulation with compliance trading identical if  $\lambda(\kappa) = t$

#### ▶ Back


### Result 2) Welfare loss from Harberger triangle of a



- Attribute-basing induces welfare loss of Harberger triangle (yellow), tax wedge is size σ't
- Welfare loss (size of triangle) rises as a more elastic



## Result 3) Welfare loss from the externality in a



- For vehicles, footprint/weight correlated with safety externality
- If *a* also causes externality, attribute-basing exacerbates that externality (purple rectangle)
- Welfare loss linear in tax wedge
- This effect dominates if tax wedge is small



## Result 4) Welfare loss from general equilibrium in "e"



- Change in  $a \Rightarrow$  general equilibrium effect for e
- e' could be above or below or equal to  $e^*$
- We expect a resulting DWL (deadweight loss) in e
- However, this DWL is likely to be smaller than the DWL in a

### Model with Incidence Concerns

- Model can accommodate incidence via welfare weights  $\theta_n$
- With revenue-recycling, net subsidy to type *n* is

$$S_n = s(e_n - \hat{\sigma}a_n) - \underbrace{s(\bar{e_n} - \hat{\sigma}\bar{a_n})}_{\text{Demogrant}}$$



### Model with Incidence Concerns

- Model can accommodate incidence via welfare weights  $\theta_n$
- With revenue-recycling, net subsidy to type *n* is

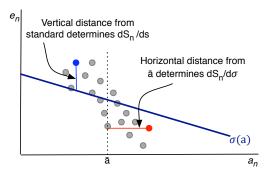
$$S_n = s(e_n - \hat{\sigma}a_n) - \underbrace{s(\bar{e_n} - \hat{\sigma}\bar{a_n})}_{\text{Demogrant}}$$

• Changing  ${\it s}$  and  $\hat{\sigma}$  have different incidences:

$$\frac{\partial S_n}{\partial s} = \underbrace{(e_n - \hat{\sigma}a_n) - (\bar{e} - \hat{\sigma}\bar{a})}_{\text{"Lump-sum transfer"}} + \underbrace{s\left(\frac{\partial e_n}{\partial s} + \frac{\partial \bar{e}}{\partial s}\right) - \hat{\sigma}s\left(\frac{\partial a_n}{\partial s} - \frac{\partial \bar{a}}{\partial s}\right)}_{\text{"Behavioral response"}}$$



### Model with Incidence Concerns


- Model can accommodate incidence via welfare weights  $\theta_n$
- With revenue-recycling, net subsidy to type *n* is

$$S_n = s(e_n - \hat{\sigma}a_n) - \underbrace{s(\bar{e_n} - \hat{\sigma}\bar{a_n})}_{\text{Demogrant}}$$

• Changing  ${\it s}$  and  $\hat{\sigma}$  have different incidences:

$$\frac{\partial S_n}{\partial s} = \underbrace{(e_n - \hat{\sigma}a_n) - (\bar{e} - \hat{\sigma}\bar{a})}_{\text{"Lump-sum transfer"}} + \underbrace{s\left(\frac{\partial e_n}{\partial s} + \frac{\partial \bar{e}}{\partial s}\right) - \hat{\sigma}s\left(\frac{\partial a_n}{\partial s} - \frac{\partial \bar{a}}{\partial s}\right)}_{\text{"Behavioral response"}}$$
$$\frac{\partial S_n}{\partial \hat{\sigma}} = \underbrace{-s(a_n - \bar{a})}_{\text{"Lump-sum transfer"}} + \underbrace{s\left(\frac{\partial e_n}{\partial \hat{\sigma}} + \frac{\partial \bar{e}}{\partial \hat{\sigma}}\right) - \hat{\sigma}s\left(\frac{\partial a_n}{\partial \hat{\sigma}} - \frac{\partial \bar{a}}{\partial \hat{\sigma}}\right)}_{\text{"Behavioral response"}}$$

🕨 Back



- If  $\theta_n$  correlated with  $a_n$ , ABR may be useful in targeting; likely explains some real-world examples
- New Proposition (in progress): optimal ABR features:

$$\hat{\sigma}^{INC} pprox rac{s \cdot \operatorname{cov}(\theta_n, a_n)}{(\sum_n rac{\partial a}{\partial \hat{\sigma}})/n}$$

- Denominator is negative  $\Rightarrow \hat{\sigma} < 0$  with positive covariance
- Approximation assumes  $s \approx \phi$  and that derivatives of e and a w.r.t.  $\hat{\sigma}$  are not correlated with  $\theta_n$   $\frown$  Back

### Model with Imperfect Targeting

- Our model assumes that e causes externality
- Taxing *e* thus recovers the first-best



### Model with Imperfect Targeting

- Our model assumes that e causes externality
- Taxing *e* thus recovers the first-best
- Taxing energy-efficiency never first-best
- In general, all flexibility useful in second-best policy design ("tagging", Akerlof 1978)
- $\Rightarrow$  Optimal policy will involve some attribute-basing, except in special cases



### Model with Imperfect Targeting

- Our model assumes that e causes externality
- Taxing *e* thus recovers the first-best
- Taxing energy-efficiency never first-best
- In general, all flexibility useful in second-best policy design ("tagging", Akerlof 1978)
- $\Rightarrow$  Optimal policy will involve some attribute-basing, except in special cases
  - But, such considerations very unlikely to rationalize observed policies 

     Back

- Possibility 1: Generalized damage function,  $\phi_n(e_n, \xi_n)$
- Intuition from related model (Jacobsen, Knittel, Sallee and van Benthem (2014)); assumes *a* and *e* are exogenous



- Possibility 1: Generalized damage function,  $\phi_n(e_n, \xi_n)$
- Intuition from related model (Jacobsen, Knittel, Sallee and van Benthem (2014)); assumes *a* and *e* are exogenous
- In JKSvB, second-best linear ABR would be OLS fit:

**1** Estimate 
$$\phi_n = \alpha + \beta e_n + \gamma a_n + \varepsilon$$

- **2** Set  $s = \hat{\beta}$  and  $-\hat{\sigma}s = \hat{\gamma}$ 
  - Efficiency gain from ABR proportional to increase in  $R^2$  from adding  $a_n$  to regression (instead of only  $e_n$ )
  - (Endogeneity of  $a_n$  will attenuate SB  $\hat{\sigma}$ )



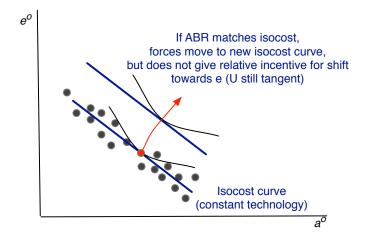
- Possibility 1: Generalized damage function,  $\phi_n(e_n, \xi_n)$
- Intuition from related model (Jacobsen, Knittel, Sallee and van Benthem (2014)); assumes *a* and *e* are exogenous
- In JKSvB, second-best linear ABR would be OLS fit:

**1** Estimate 
$$\phi_n = \alpha + \beta e_n + \gamma a_n + \varepsilon$$

- **2** Set  $s = \hat{\beta}$  and  $-\hat{\sigma}s = \hat{\gamma}$ 
  - Efficiency gain from ABR proportional to increase in  $R^2$  from adding  $a_n$  to regression (instead of only  $e_n$ )
  - (Endogeneity of  $a_n$  will attenuate SB  $\hat{\sigma}$ )
- · Actual policies do not maximize possible gains
  - Want attribute with maximal information about φ that is orthogonal to e; but policymakers explicitly pick a that is tightly correlated with e
  - Policies choose σ̂ based on correlation of a and e; amounts to inefficient restriction on OLS Back

- Possibility 2: Important special case is  $\phi_n = \gamma_n e_n$
- Marginal benefit of *e<sub>n</sub>* varies across consumers
  - Consumers drive different amounts
  - Local air pollution damages vary by location
- If  $a_n$  correlated with  $\gamma_n$ , ABR can improve targeting
- Optimal policy will approximate S(a, e) = s(a) × e; let marginal incentive to e<sub>n</sub> vary across types




- Possibility 2: Important special case is  $\phi_n = \gamma_n e_n$
- Marginal benefit of *e<sub>n</sub>* varies across consumers
  - Consumers drive different amounts
  - Local air pollution damages vary by location
- If  $a_n$  correlated with  $\gamma_n$ , ABR can improve targeting
- Optimal policy will approximate S(a, e) = s(a) × e; let marginal incentive to e<sub>n</sub> vary across types
- But, actual policies are linear,  $S(a,e) = se s\hat{\sigma}a$
- Does not allow differential marginal incentives for e
- New Proposition (in progress): SB *ô* ≠ 0 if *γ<sub>n</sub>* correlated with *∂e<sub>n</sub>*; and *ô* attenuated by elasticity of *a*

- Possibility 2: Important special case is  $\phi_n = \gamma_n e_n$
- Marginal benefit of *e<sub>n</sub>* varies across consumers
  - Consumers drive different amounts
  - Local air pollution damages vary by location
- If  $a_n$  correlated with  $\gamma_n$ , ABR can improve targeting
- Optimal policy will approximate S(a, e) = s(a) × e; let marginal incentive to e<sub>n</sub> vary across types
- But, actual policies are linear,  $S(a,e) = se s\hat{\sigma}a$
- Does not allow differential marginal incentives for e
- New Proposition (in progress): SB *σ̂* ≠ 0 if *γ<sub>n</sub>* correlated with *∂e<sub>n</sub>*; and *σ̂* attenuated by elasticity of *a*
- Optimal  $\hat{\sigma} \neq 0$  in general case, but actual policy ill suited to address this problem Back

# Technology

- Firms can comply with flat standard by:
  - 1 Downsizing
  - 2 Adding technology
  - 8 Mix shifting
- Advocates of ABR claim that we want to spur technology and avoid downsizing
- Prefer technology only if there is some additional market failure; perhaps spillovers from technology. But...
  - Many technologies are patentable, not clear there are big spillovers not captured by market incentives
  - Many technologies deployed for compliance already available, widely known
- Downsizing is efficient, unless people undervalue their own safety; ABR advocates seem confused about private versus social safety effects





- Actual policy "fits" data; eliminates downsizing
- This induces technology; but (incorrectly) preserves relative price of *a* and *e*
- Might even lead to reduction in e Back

## Technology

- Actual policy "fits data"; eliminates downsizing
- Model extension: assume technology externality, size  $\gamma$ , from any product that extends beyond frontier
- **Proposition:** Optimal attribute slope for vehicles <u>on frontier</u>, when there is a technology spillover is:

$$\hat{\sigma}^{T} = \frac{\gamma \frac{\partial C}{\partial a}}{\phi + \gamma \frac{\partial C}{\partial e}}$$

- When  $\gamma/\phi \rightarrow 0$ ,  $\hat{\sigma}^T \rightarrow 0$ ; i.e., if energy externalities dominate technology spillovers, then want no ABR
- When  $\phi \to 0$ ,  $\hat{\sigma}^T \to \frac{\partial C}{\partial a} / \frac{\partial C}{\partial e}$ ; this is actual policy
- Actual policy right when there is no energy externality; only technology market failure
- At most, a modest ABR could be justified, but not clear there are spillovers in real world PBack