Selection on Welfare Gains:
Experimental Evidence from Electricity Plan Choice

Koichiro Ito1 Takanori Ida2 Makoto Tanaka3

1University of Chicago and NBER (ito@uchicago.edu)

2Kyoto University (ida@econ.kyoto-u.ac.jp)

3GRIPS (mtanaka@grips.ac.jp)
Voluntary take-up plays a key role in economic policies

- **Examples:**
 - Food stamp (Finkelstein and Notowidigdo, 2018)
 - Disability benefits (Deshpande and Li, 2019)
 - Energy efficiency rebates (Allcott and Greenstone, 2017)
 - Electricity/natural gas/water tariffs (Hortacsu, et al., 2017, Fowlie et al., 2018)

- **Self-selection:** Individuals select into a program

- **Welfare gains from these policies depend on two factors:**
 1. Size of enrollment: “How many people select into?”
 2. Types of enrollees: “What types of people select into?”
Example: Electricity pricing in many countries

- **Default**: A flat price is inefficient b/c MC of electricity is time-varying
- **Optional**: Dynamic pricing makes \(P = MC \) → improves social welfare
Example: ComEd in Illinois offers opt-in hourly pricing

Check Prices. Shift Usage. Save Money.
Enroll in Hourly Pricing.
Social welfare gain comes from ΔDWL

Peak hours ($\tau_0 \rightarrow \tau_1$)

Off-peak hours ($\tau'_0 \rightarrow \tau'_1$)
Social welfare gain depends on two factors

1. “How many consumers select into dynamic pricing?”
2. “What types of consumers (e.g. price elasticity) select into?”
Social welfare gain depends on two factors

1. “How many consumers select into dynamic pricing?”
2. “What types of consumers (e.g. price elasticity) select into?”

→ Key question: How is selection related to heterogeneity in welfare gains?
In this paper, we explore this question by three steps

1. A framework based on the Roy model and Marschak (1953)
 - Connect selection to heterogeneity in social welfare gains
 - Marginal treatment effects (MTE) (Eisenhauer, Heckman, and Vytlacil 2015)
 - Sufficient statistics (Chetty 2009, Kleven 2018)
In this paper, we explore this question by three steps

1. A framework based on the Roy model and Marschak (1953)
 - Connect selection to heterogeneity in social welfare gains
 - Marginal treatment effects (MTE) (Eisenhauer, Heckman, and Vytlacil 2015)
 - Sufficient statistics (Chetty 2009, Kleven 2018)

2. A randomized field experiment on electricity tariff choice
 - Generate randomized variation in a take-up incentive for dynamic pricing
 - Estimate MTE by a method from Brinch, Mogstad, and Wiswall (2017)
In this paper, we explore this question by three steps

1. A framework based on the Roy model and Marschak (1953)
 - Connect selection to heterogeneity in social welfare gains
 - Marginal treatment effects (MTE) (Eisenhauer, Heckman, and Vytlacil 2015)
 - Sufficient statistics (Chetty 2009, Kleven 2018)

2. A randomized field experiment on electricity tariff choice
 - Generate randomized variation in a take-up incentive for dynamic pricing
 - Estimate MTE by a method from Brinch, Mogstad, and Wiswall (2017)

3. Welfare analysis of existing and counterfactual policies
 - Is the current level of take-up socially optimal?
 - What policy can achieve the socially optimal take-up?
Relations to energy policy & the literature

1. Economists have advocated dynamic electricity pricing for long time
 ▶ Smart meters solved the infrastructure problem (Joskow and Wolfram 2012)
 ▶ Several RCTs show the effectiveness of dynamic pricing
Relations to energy policy & the literature

1. Economists have advocated dynamic electricity pricing for long time
 ▶ Smart meters solved the infrastructure problem (Joskow and Wolfram 2012)
 ▶ Several RCTs show the effectiveness of dynamic pricing

2. However, mandatory dynamic pricing is politically infeasible in practice
 ▶ Many countries (US, Japan, Chile, etc.) rely on voluntary take-up
Relations to energy policy & the literature

1. Economists have advocated dynamic electricity pricing for long time
 - Smart meters solved the infrastructure problem (Joskow and Wolfram 2012)
 - Several RCTs show the effectiveness of dynamic pricing

2. However, mandatory dynamic pricing is politically infeasible in practice
 - Many countries (US, Japan, Chile, etc.) rely on voluntary take-up

3. Important to study policy design for non-mandatory policies
 - Default bias (Fowlie et al., 2018)
 - Information friction (Ito, Ida, Tanaka, 2017)
 - Selection and welfare (This study)
Roadmap of the talk

1. Introduction and Background
2. Conceptual Framework
3. Experimental Design and Data
4. Empirical Analysis: Selection Equation
5. Empirical Analysis: MTE
6. Welfare Analysis
7. Conclusion
Conceptual Framework
What affects consumers’ selection decisions?
Prediction 1: Selection on expected savings (level)

- Expected savings from dynamic pricing, with zero elasticity assumption
- Prediction 1: “Structural winners” are more likely to select
 - Similar to “selection on the level” in Einav et al (2013)
Prediction 2: Selection on behavioral responses (slope)

- Example (peak-hour): Loss in consumer surplus is smaller for elastic
- **Prediction 2:** Price-elastic customers are more likely to select
 - Similar to “selection on the slope” in Einav et al (2013)
 - This is **Advantageous Selection** to social planner
• We use the Roy model to characterize these two selection mechanisms
• We use the Roy model to characterize these two selection mechanisms.

\[
D = 1 \text{ if } S = \nu(x, z) - V > 0
\]

\[
Y_{MTE}(x, u) = E[Y_1 - Y_0 | X, U]
\]

\[
\text{MTE}
\]

\[
Y_{MTE}(x, z) = \Pr(D = 1 | X, Z)
\]

\[
= \text{Propensity Score}
\]
Consumer’s problem: Selection equation and MTE

- Consumer selects into treatment \((D = 1)\) if the net surplus \(S_1 - S_0 > 0\)

\[S_1 - S_0 = \nu(X, Z) - V \]

- \(S_1\) and \(S_0\): the consumer’s indirect utility for \(D = 1\) and \(D = 0\)
- \(X\): observables (e.g. expected savings, demographics)
- \(Z\): a financial take-up incentive
- \(\nu(.)\): a flexible function of observables
- \(V\): unobserved disutility for treatment, with distribution \(F_V(\cdot)\)
Consumer’s problem: Selection equation and MTE

- Consumer selects into treatment \((D = 1)\) if the net surplus \(S_1 - S_0 > 0\)

\[
S_1 - S_0 = \nu(X, Z) - V
\]

- \(S_1\) and \(S_0\): the consumer’s indirect utility for \(D = 1\) and \(D = 0\)
- \(X\): observables \((\text{e.g. expected savings, demographics})\)
- \(Z\): a financial take-up incentive
- \(\nu(\cdot)\): a flexible function of observables
- \(V\): unobserved disutility for treatment, with distribution \(F_V(\cdot)\)

- Define the CDF of \(V\) by \(U = F_V(V)\)
 - \(U \in [0, 1]\) tells us the quantiles of unobserved disutility for treatment
 - Propensity score: \(P(x, z) = \Pr[D = 1|x, z] = F_V(\nu(x, z))\)
• Marginal Treatment Effect (MTE) ≡ ATE for consumer type U:

$$Y^{MTE}(x, u) = E[Y_1 - Y_0 | X = x, U = p]$$

Hypothetical example:

```
Treatment effect

0

Consumer type $U \in [0, 1]$
(unobserved disutility for treatment)
```

0
• Marginal Treatment Effect (MTE) ≡ ATE for consumer type U:

$$Y^{MTE}(x, u) = E[Y_1 - Y_0 | X = x, U = u]$$

Homogeneous treatment effect:

$$Y^{MTE} = E[Y_1 - Y_0 | X = x, U = u]$$

Consumer type $U \in [0, 1]$

(unobserved disutility for treatment)
Marginal Treatment Effect (MTE) ≡ ATE for consumer type U:

$$Y_{MTE}^{MTE}(x, u) = E[Y_1 - Y_0 | X = x, U = p]$$

Heterogeneous treatment effect:

$Y_{MTE} = E[Y_1 - Y_0 | X = x, U = u]$

(Consumer type $U \in [0, 1]$)

(unobserved disutility for treatment)
• Marginal Treatment Effect (MTE) ≡ ATE for consumer type U:

$$Y^{MTE}(x, u) = E[Y_1 - Y_0|X = x, U = p]$$

Heterogeneous treatment effect:

Larger response

Consumer type $U \in [0, 1]$ (unobserved disutility for treatment)

• Marginal Treatment Responses (MTR): Mogstad, Santos, Torgovitsky (2018)

$$m_0(x, u) = E[Y_0|X = x, U = p]$$

$$m_1(x, u) = E[Y_1|X = x, U = p]$$
Consumer

Selection Equation

\[D = 1 \text{ if } S = \nu(x, z) - V > 0 \]

\[MTE = m_1 - m_0 \]

\[m_0 = E[Y_0|X, U] \]

\[m_1 = E[Y_1|X, U] \]

\((U = \text{CDF of } V) \)

Social Planner

Incentive for Switching

\[Z \]
Consumer Social Planner

Selection Equation

\[D = 1 \text{ if } S = \nu(x, z) - V > 0 \]

\[m_0 = E[Y_0|X, U] \]
\[m_1 = E[Y_1|X, U] \]

\((U = \text{CDF of } V) \)

\[MTE = m_1 - m_0 \]

Incentive for Switching

\[Z \]

\[P(x, z) = Pr(D = 1|X, Z) \]
\[\text{= Propensity Score} \]

Marginal Welfare Gain

\[\frac{dW^{ITT}}{dz} = f(P(x, z), m_0, m_1) \]
Social planner’s problem: Social welfare gain $W_1 - W_0$

- Social planner uses a financial take-up incentive (z)
- If a consumer selects into dynamic pricing, the social welfare gain is:

$$W_1 - W_0 = (S_1 - S_0) + (PS_1 - PS_0)$$

- S: Consumer’s indirect utility
- PS: Producer surplus
Social planner’s problem: Social welfare gain $W_1 - W_0$

- Social planner uses a financial take-up incentive (z)
- If a consumer selects into dynamic pricing, the social welfare gain is:

$$W_1 - W_0 = (S_1 - S_0) + (PS_1 - PS_0)$$

- S: Consumer’s indirect utility
- PS: Producer surplus

- The MTE of the social welfare gain can be written by:

$$W^{MTE}(x, z, u) = E[W_1 - W_0|X = x, Z = z, U = p]$$

$$= S^{MTE}(x, z, p) + PS^{MTE}(x, z, p)$$
Social planner’s problem: Welfare gain per capita W^{ITT}

- A utilitarian social planner maximizes the per-capita welfare gain:

$$W^{ITT}(x, z) = \int_{0}^{P(x,z)} W^{MTE}(x, z, p) dp$$

Consumer type $U \in [0, 1]$
(unobserved disutility for treatment)
Consumer

• Suppose incentive is $Z = z$
• Consumer switches if $U < P(x, z)$

Social planner

• Social welfare gain is not maximized at $Z = z$

Consumer type $U \in [0, 1]$ (unobserved disutility for treatment)
Consumer

- Suppose incentive is \(Z = z^* \)
- Consumer switches if \(U < P(x, z^*) \)

Social planner

- Social welfare gain is maximized at \(Z = z^* \)

Consumer type \(U \in [0, 1] \)

(unobserved disutility for treatment)
Marginal welfare gain

- Marginal welfare gain with respect to a take-up incentive \((z)\):

\[
\frac{dW^{ITT}(x, z)}{dz} = \frac{d}{dz} \int_0^{P(x, z)} W^{MTE}(x, z, p) dp
\]

\[
= \frac{dP(x, z)}{dz} \cdot \underbrace{W^{MTE}(x, z, P(x, z))}_{\text{Welfare gain from marginal consumers}}.
\]

- The equality comes from Leibniz rule

- The parameters that need to be estimated in empirical analysis:
 1. \(W^{MTE}(x, z, p)\)
 2. \(P(x, z) = \Pr[D = 1|x, z]\): Propensity score from selection equation
$W^{MTE}(x, z, p)$ is a function of estimable parameters

- Known parameters:
 - τ_{tj}: electricity price for hour t for plan j
 - c_t: marginal cost of electricity for hour t
$W^{MTE}(x, z, p)$ is a function of estimable parameters

- **Known parameters:**
 - τ_{tj}: electricity price for hour t for plan j
 - c_t: marginal cost of electricity for hour t

- W^{MTE} can be written by:

$$W^{MTE}(x, z, p) = S^{MTE}(x, p) + PS^{MTE}(x, p)$$

$$= \nu(x) - F_v^{-1}(p) + \sum_{t \in T} \left[(\tau_{t,1} - c_t) \cdot m_{t,1}(x, p) - (\tau_{t,0} - c_t) \cdot m_{t,0}(x, p) \right]$$
\(W^{MTE}(x, z, p) \) is a function of estimable parameters

- **Known parameters:**
 - \(\tau_{tj} \): electricity price for hour \(t \) for plan \(j \)
 - \(c_t \): marginal cost of electricity for hour \(t \)

- **\(W^{MTE} \) can be written by:**

 \[
 W^{MTE}(x, z, p) = S^{MTE}(x, p) + PS^{MTE}(x, p) \\
 = \nu(x) - F_{V}^{-1}(p) + \sum_{t \in T} \left[(\tau_{t,1} - c_t) \cdot m_{t,1}(x, p) - (\tau_{t,0} - c_t) \cdot m_{t,0}(x, p) \right]
 \]

- \(\nu(x) - F_{V}^{-1}(p) \) are estimable from the selection equation
$W^{MTE}(x, z, p)$ is a function of estimable parameters

- **Known parameters:**
 - τ_{tj}: electricity price for hour t for plan j
 - c_t: marginal cost of electricity for hour t

- W^{MTE} can be written by:

 \[
 W^{MTE}(x, z, p) = S^{MTE}(x, p) + PS^{MTE}(x, p)
 = \nu(x) - F^{-1}_V(p) + \sum_{t \in T} \left[(\tau_{t,1} - c_t) \cdot m_{t,1}(x, p) - (\tau_{t,0} - c_t) \cdot m_{t,0}(x, p) \right]
 \]

- $\nu(x) - F^{-1}_V(p)$ are estimable from the selection equation
- PS^{MTE} is a function of $m_{t,0}$ and $m_{t,1}$ (MTRs)
Consumer

Selection Equation

\[D = 1 \text{ if } S = \nu(x, z) - V > 0 \]

\[MTE = m_1 - m_0 \]

\[m_0 = E[Y_0|X, U] \]
\[m_1 = E[Y_1|X, U] \]

\((U = \text{CDF of } V) \)

Social Planner

Incentive for Switching

\[Z \]

\[P(x, z) = Pr(D = 1|X, Z) \]
\[= \text{Propensity Score} \]

Marginal Welfare Gain

\[\frac{dW^{ITT}}{dz} = f(P(x, z), m_0, m_1) \]
Optimal $Z = z^*(x)$ and $Z = z^*$

- The socially optimal Z can be obtained by estimating propensity score $P(x, z)$ and the MTE of the welfare gain $W^{MTE}(x, z, p)$.

- When the social planner can differentiate Z based on observables X, the optimal differentiated take-up incentive $z^*(x)$ is:
 \[
 z^*(x) = \arg\max_{z(x)} \int_0^{P(x,z)} W^{MTE}(x, z, p) dp.
 \]

- When the planner cannot differentiate Z by X, the planner can find the optimal uniform take-up incentive z^* by
 \[
 z^* = \arg\max_z \int_X \int_0^{P(x,z)} W^{MTE}(x, z, p) dp \, dF_X
 \]
 where F_X is the distribution of X.
(Note) Subjective cost of treatment

• Suppose that we want to decompose $S_1 - S_0$ into $(\nu_1 - \nu_0) - C$
 ▶ $(\nu_1 - \nu_0) =$ change in indirect utility purely from electricity consumption
 ▶ $C =$ subjective cost of treatment (Eisenhauer, Heckman, and Vytlacil (2015))

• C could include:
 ▶ Switching cost
 ▶ Plan preferences that are unrelated to electricity consumption

• Note that this decomposition is not necessary for our analysis
• However, for some other questions, it can be useful to know C
(Note) Two more assumptions are required to estimate C

- Assumption 1: Quasi-linear utility for electricity consumption
- Assumption 2: Demand curve is locally linear

$$S_1 - S_0 = (v_1 - v_0) - C$$

$$= \frac{1}{2} \sum_{t \in T} (\tau_{1,t} - \tau_{0,t}) (Y_{t,1} + Y_{t,0}) - C$$

- Then, the MTE of the subjective cost of treatment is:

$$C^{MTE}(x, p) = S^{MTE} - \frac{1}{2} \sum_{t \in T} [\Delta \tau_t (m_{t,0} + m_{t,1})]$$
Roadmap of the talk

1. Introduction and Background
2. Conceptual Framework
3. Experimental Design and Data
4. Empirical Analysis: Selection Equation
5. Empirical Analysis: MTE
6. Welfare Analysis
7. Conclusion
Field Experiment and Results
A field experiment in the city of Yokohama, Japan

- We collaborated with several government agencies and firms
 - Ministry of Economy, Trade, and Industry; City of Yokohama
 - Tokyo Electric Power Company; Toshiba; Panasonic
The city of Yokohama is known for their summer Pikachu festival
Hourly temperature on a hot summer day in Yokohama
<table>
<thead>
<tr>
<th>Group</th>
<th>Eligible to switch tariff</th>
<th>Information provision</th>
<th>Incentive for switching</th>
<th>Number of customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>697</td>
</tr>
<tr>
<td>Baseline</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>486</td>
</tr>
<tr>
<td>Information</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>468</td>
</tr>
<tr>
<td>Information + Incentive</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>502</td>
</tr>
</tbody>
</table>

Focus of this study

Note: Our another paper, Ito, Ida, Tanaka (2017) studies the effect of the information provision on consumer behavior
Below is the estimated difference in your payment based on your past consumption data:

You are expected to pay **JPY 5,500 less** if you switch to the new tariff.
Experimental timeline and data:

<table>
<thead>
<tr>
<th>Group</th>
<th>Information provision</th>
<th>Incentive for switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Information + Incentive</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Stage 1**: Elicit Risk Preference
- **Stage 2**: Switching Decision
- **Stage 3**: New Tariff

- **Main data**: Household-level electricity usage for every 30 minutes
- **We also elicit risk preferences in the pre-experimental period**
 - Use the method by Callen, Isaqzadeh, Long, and Sprenger (2014 AER)
Summary statistics: Observables are balanced by group b/c of randomization

<table>
<thead>
<tr>
<th></th>
<th>Baseline group</th>
<th>Incentivized group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household income (JPY10,000)</td>
<td>742.31</td>
<td>749.80</td>
</tr>
<tr>
<td></td>
<td>(296.29)</td>
<td>(311.25)</td>
</tr>
<tr>
<td>Years of schooling</td>
<td>14.84</td>
<td>14.62</td>
</tr>
<tr>
<td></td>
<td>(2.22)</td>
<td>(2.30)</td>
</tr>
<tr>
<td>Employed</td>
<td>0.84</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>Risk aversion</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Certainty premium</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>Square meters</td>
<td>99.82</td>
<td>100.91</td>
</tr>
<tr>
<td></td>
<td>(33.20)</td>
<td>(33.43)</td>
</tr>
<tr>
<td>Number of bedrooms</td>
<td>3.70</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td>(1.10)</td>
<td>(0.99)</td>
</tr>
<tr>
<td>Age of building</td>
<td>12.71</td>
<td>11.63</td>
</tr>
<tr>
<td></td>
<td>(12.29)</td>
<td>(11.15)</td>
</tr>
<tr>
<td>Number of room AC</td>
<td>3.18</td>
<td>3.13</td>
</tr>
<tr>
<td></td>
<td>(1.25)</td>
<td>(1.25)</td>
</tr>
<tr>
<td>Number of TV</td>
<td>2.08</td>
<td>2.05</td>
</tr>
<tr>
<td></td>
<td>(1.02)</td>
<td>(0.94)</td>
</tr>
<tr>
<td>Number of refrigerator</td>
<td>1.16</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>(0.41)</td>
<td>(0.38)</td>
</tr>
<tr>
<td>Electricity usage (kWh/day) in the pre-experimental period</td>
<td>13.17</td>
<td>13.18</td>
</tr>
<tr>
<td></td>
<td>(5.82)</td>
<td>(6.13)</td>
</tr>
<tr>
<td>Expected savings from dynamic pricing (USD/year)</td>
<td>-2.00</td>
<td>-1.86</td>
</tr>
<tr>
<td></td>
<td>(29.73)</td>
<td>(34.96)</td>
</tr>
</tbody>
</table>
Roadmap of the talk

1. Introduction and Background
2. Conceptual Framework
3. Experimental Design and Data
4. Empirical Analysis: Selection Equation
5. Empirical Analysis: MTE
6. Welfare Analysis
7. Conclusion
Empirical Analysis: Selection Equation
Overall switching rate by treatment group

Baseline group: 30.8%
Incentivized group: 47.6%

Take-up Rate (%)
Group 1) Information-only group

- Switching rate = 31%
- Switching rate is high for structural winners (expected gain > 0)
Group 2) Information + incentive group

- Switching rate = 48%
- The take-up incentive let structural losers also switch
• **Selection on the level**: Structural winners are more likely to switch

• **Switching incentive nudged consumers** (including structural losers) to switch

Switching rate by expected savings from switching

![Graph showing switching rate by expected savings from dynamic pricing](image-url)
Selection equation

\[D = 1\{\nu(X, Z) - V > 0\} \]

- Observables:
 - Randomly assigned $60 cash incentive (Z)
 → We can use its coefficient to scale all estimates into $
 - expected savings from dynamic pricing ($)
 - Years of schooling, employment, and other demographics
 - Risk aversion, Certainty premium

- We elicited risk preferences in the pre-experimental period
Table 3: Selection Equation

Average marginal effects on $\Pr[D_i = 1$ (household i selected into dynamic pricing)]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-up incentive (USD)</td>
<td>0.0029</td>
<td>0.0030</td>
<td>0.0031</td>
<td>0.0033</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0006)</td>
<td>(0.0006)</td>
</tr>
<tr>
<td>Expected savings (USD)</td>
<td>0.0019</td>
<td>0.0021</td>
<td>0.0026</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td>(0.0006)</td>
<td></td>
</tr>
<tr>
<td>Risk aversion</td>
<td>-0.2045</td>
<td>-0.2430</td>
<td>-0.2606</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0811)</td>
<td>(0.0862)</td>
<td>(0.0876)</td>
<td></td>
</tr>
<tr>
<td>Certainty premium</td>
<td>-0.3130</td>
<td>-0.3355</td>
<td>-0.3432</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0963)</td>
<td>(0.1015)</td>
<td>(0.1027)</td>
<td></td>
</tr>
<tr>
<td>Years of schooling</td>
<td>0.0210</td>
<td>0.0160</td>
<td>0.0115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0075)</td>
<td>(0.0079)</td>
<td>(0.0080)</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>-0.1308</td>
<td>-0.0541</td>
<td>-0.0818</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0496)</td>
<td>(0.0638)</td>
<td>(0.0646)</td>
<td></td>
</tr>
<tr>
<td>Income (100,000 USD)</td>
<td>0.0527</td>
<td>0.0541</td>
<td>0.0690</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0593)</td>
<td>(0.0641)</td>
<td>(0.0650)</td>
<td></td>
</tr>
<tr>
<td>Covariates interacted with each other</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-parametric controls for expected savings</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-628.8</td>
<td>-613.1</td>
<td>-592.7</td>
<td>-579.6</td>
</tr>
</tbody>
</table>
Roadmap of the talk

1. Introduction and Background
2. Conceptual Framework
3. Experimental Design and Data
4. Empirical Analysis: Selection Equation
5. Empirical Analysis: MTE
6. Welfare Analysis
7. Conclusion
Empirical Analysis: MTE
MTE estimation with a discrete instrument Z

- Brinch, Mogstad, and Wiswall (2017)
 - A linear MTE can be estimated by Z given standard IV assumptions
 - Non-linear MTE can be estimated with the separability assumption:
 - Denote potential outcomes by: $Y_j = \mu_j(X) + U_j$, $j = \{0, 1\}$

 Assumption: $E[Y_j|U, X] = \mu_j(X) + E[U_j|U]$, $j = \{0, 1\}$
MTE estimation with a discrete instrument Z

- Brinch, Mogstad, and Wiswall (2017)
 - A linear MTE can be estimated by Z given standard IV assumptions
 - Non-linear MTE can be estimated with the separability assumption:
 - Denote potential outcomes by: $Y_j = \mu_j(X) + U_j, \ j = \{0, 1\}$

 Assumption: $E[Y_j|U, X] = \mu_j(X) + E[U_j|U], \ j = \{0, 1\}$

- With this assumption, the MTE can be written as:

 $Y_{MTE}(x, p) = \mu_1(X) - \mu_0(X) + E[U_1 - U_0|U = p], \ j = \{0, 1\}$

 - This allows the MTE to be non-linear in U
 - This still allows the MTE to vary by X
 - Restriction: $E[U_1 - U_0|U = p]$ does not vary by X
Peak-hour usage Y^{MTE}: Selection on the *Slope*

Panel A: Summer

- This figure shows $Y^{MTE}(x, p)$ for a given set of observables x.
- We obtain this figure for each set of $x \in X$.
Peak-hour usage Y^{MTE}: Selection on the *Slope*

Panel B: Winter

- This figure shows $Y^{MTE}(x, p)$ for a given set of observables x
- We obtain this figure for each set of $x \in X$
Roadmap of the talk

1. Introduction and Background
2. Conceptual Framework
3. Experimental Design and Data
4. Empirical Analysis: Selection Equation
5. Empirical Analysis: MTE
6. Welfare Analysis
7. Conclusion
Welfare Analysis
Social planner’s problem: Welfare gain per capita W^{ITT}

- A utilitarian social planner maximizes the per-capita welfare gain:

\[
W^{ITT}(x, z) = \int_0^{P(x, z)} W^{MTE}(x, z, p) \, dp
\]

Consumer type $U \in [0, 1]$

(unobserved disutility for treatment)
Empirical results: Per-capita welfare gain \(\bar{W}(x, z) \)

- This figure shows \(\frac{d\bar{W}(x, z)}{dz} \) for a given set of observables \(x \)
- We obtain this figure for each set of \(x \in X \)
Marginal welfare gain

• Marginal welfare gain with respect to a take-up incentive \((z)\):

\[
\frac{dW^{ITT}(x, z)}{dz} = \frac{d}{dz} \int_0^{P(x, z)} W^{MTE}(x, z, p) dp
\]

\[
= \frac{dP(x, z)}{dz} \cdot W^{MTE}(x, z, P(x, z)) .
\]

Size of marginal consumers

Welfare gain from marginal consumers

• The equality comes from Leibniz rule

• The parameters that need to be estimated in empirical analysis:

1. \(W^{MTE}(x, z, p)\)
2. \(P(x, z) = \Pr[D = 1|x, z]\): Propensity score from selection equation
Empirical results: Marginal welfare gain $\frac{d\bar{W}(x,z)}{dz}$

- This figure shows $\frac{d\bar{W}(x,z)}{dz}$ for a given set of observables x
- We obtain this figure for each set of $x \in X$
Optimal $Z = z^*(x)$ and $Z = z^*$

- The socially optimal Z can be obtained by estimating propensity score $P(x, z)$ and the MTE of the welfare gain $W^{MTE}(x, z, p)$.

- When the social planner can differentiate Z based on observables X, the optimal differentiated take-up incentive $z^*(x)$ is:

$$z^*(x) = \arg\max_{z(x)} \int_0^{P(x,z)} W^{MTE}(x, z, p) dp.$$

- When the planner cannot differentiate Z by X, the planner can find the optimal uniform take-up incentive z^* by

$$z^* = \arg\max_z \int_X \int_0^{P(x,z)} W^{MTE}(x, z, p) dp \ dF_X$$

where F_X is the distribution of X.

Table 6: Welfare Comparison Between Counterfactual Policies

Panel A: Welfare gain from each policy

<table>
<thead>
<tr>
<th>Policy</th>
<th>Evidence from</th>
<th>Targeting</th>
<th>Take-up Welfare gain: W^{ATT} ($/year/consumer)</th>
<th>Welfare gain: W^{ITT} ($/year/consumer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = 0$</td>
<td>RCT</td>
<td>No</td>
<td>30.8%</td>
<td>60.2</td>
</tr>
<tr>
<td>$Z = 60$</td>
<td>RCT</td>
<td>No</td>
<td>47.6%</td>
<td>47.9</td>
</tr>
<tr>
<td>$Z = z^*$</td>
<td>Counterfactual</td>
<td>No</td>
<td>43.9%</td>
<td>53.8</td>
</tr>
<tr>
<td>$Z = z^*(x)$</td>
<td>Counterfactual</td>
<td>Based on X</td>
<td>44.1%</td>
<td>75.1</td>
</tr>
<tr>
<td>$Z = z^\dagger(x)$</td>
<td>Counterfactual</td>
<td>Based on a subset of X</td>
<td>42.0%</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Panel B: Welfare comparison

<table>
<thead>
<tr>
<th></th>
<th>Difference in W^{ITT}</th>
<th>Difference in W^{ATT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = z^*$ vs. $Z = 0$</td>
<td>5.6 (0.89)</td>
<td>-6.3 (5.81)</td>
</tr>
<tr>
<td>$Z = z^*(x)$ vs. $Z = 0$</td>
<td>15.1 (1.12)</td>
<td>14.9 (5.18)</td>
</tr>
<tr>
<td>$Z = z^(x)$ vs. $Z = z^$</td>
<td>9.5 (0.42)</td>
<td>21.3 (0.96)</td>
</tr>
<tr>
<td>$Z = z^*(x)$ vs. $Z = z^\dagger(x)$</td>
<td>5.0 (0.40)</td>
<td>8.2 (1.57)</td>
</tr>
</tbody>
</table>

- $Z = z^*(x)$ is based on all observable variables (X)
- $Z = z^\dagger(x)$ is based on a subset of X (pre-experimental electricity usage data only)

(Note: This welfare gain does not include savings from potential reductions in long-run investment costs for generation capacity)
Panel A: Welfare gain from each policy

<table>
<thead>
<tr>
<th>Policy</th>
<th>Evidence from</th>
<th>Targeting</th>
<th>Take-up</th>
<th>Welfare gain: W^{ATT} ($/year/consumer)</th>
<th>Welfare gain: W^{ITT} ($/year/consumer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = 0$</td>
<td>RCT</td>
<td>No</td>
<td>30.8%</td>
<td>60.2</td>
<td>18.0</td>
</tr>
<tr>
<td>$Z = 60$</td>
<td>RCT</td>
<td>No</td>
<td>47.6%</td>
<td>47.9</td>
<td>23.2</td>
</tr>
<tr>
<td>$Z = z^*$</td>
<td>Counterfactual</td>
<td>No</td>
<td>43.9%</td>
<td>53.8</td>
<td>23.7</td>
</tr>
<tr>
<td>$Z = z^*(x)$</td>
<td>Counterfactual</td>
<td>Based on X</td>
<td>44.1%</td>
<td>75.1</td>
<td>33.1</td>
</tr>
<tr>
<td>$Z = z^\dagger(x)$</td>
<td>Counterfactual</td>
<td>Based on a subset of X</td>
<td>42.0%</td>
<td>66.9</td>
<td>28.1</td>
</tr>
</tbody>
</table>

Panel B: Welfare comparison

<table>
<thead>
<tr>
<th>Difference in W^{ITT}</th>
<th>Difference in W^{ATT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = z^*$ vs. $Z = 0$</td>
<td>5.6 (0.89)</td>
</tr>
<tr>
<td>$Z = z^*(x)$ vs. $Z = 0$</td>
<td>15.1 (1.12)</td>
</tr>
<tr>
<td>$Z = z^(x)$ vs. $Z = z^$</td>
<td>9.5 (0.42)</td>
</tr>
<tr>
<td>$Z = z^*(x)$ vs. $Z = z^\dagger(x)$</td>
<td>5.0 (0.40)</td>
</tr>
</tbody>
</table>

- W^{ITT} can be maximized by $Z = z^*(x)$. $Z = z^\dagger(x)$ & $Z = z^*$ are also useful policies.
- The uniform subsidy ($Z = z^*$) improves W^{ITT}, but W^{ATT} gets lower.
- This is because the welfare gain is diminishing in $U = p$.
- Differentiated subsidy ($Z = z^*(x)$) improves W^{ITT} and W^{ATT} by optimal targeting.
Conclusion
We studied selection on welfare gains and policy design

1. Framework:
 ▶ Connect heterogeneity in selection to heterogeneity in social welfare gains

2. Randomized field experiment on electricity tariff choice:
 ▶ Finding 1: Structural winners were more likely to select (level)
 ▶ Finding 2: Price-elastic consumers were more likely to select (slope)

3. Welfare analysis to compare counterfactual policies:
 ▶ Finding 3: Quantify optimal take-up incentives $z^*(x)$ that exploit heterogeneity in selection and welfare gains